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1 Introduction

1.1 Background
In compliance with the Dutch Water Act (‘Waterwet, 2009’), the safety of the Dutch primary
sea and flood defences must be assessed periodically for the required level of protection. In
the Netherlands, the safety assessment of flood defences is carried out by evaluating dike
sections, dune transects and structures individually, using representative hydraulic load
conditions in combination with mathematical descriptions of failure mechanisms. From 2017
onwards, the evaluation will be done for entire ‘dike rings’, using the probability of flooding of
he protected area as the main criterion. A dike ring area is an area that is protected from
flooding by a dike ring, i.e. a closed system of flood defences (dikes, dunes, hydraulic
structures, barriers). The differences with respect to the present assessment are twofold:

- Safety assessment per dike-ring in stead of per dike stretch;
- Quantification of the probability of failure instead of an assessment ‘dike stretch is

safe or unsafe’.

The advantage of the new approach is that it provides valuable insights in the weaker spots in
the flood defence chain and, consequently, on the effciency of investments of improvement
works in terms of “risk reduction per invested euro”.

The computation of failure probabilities for dike rings is a complex matter. Over the last
decades, significant research was carried out to explore the possibility carrying out a safety
assessment based on failure probabilities for all dike ring areas in the Netherlands. The
research resulted, among others, in a probabilistic computation tool called PC-Ring. PC-Ring
computes failure probabilities for flood defence systems composed of dikes, dunes and
hydraulic structures. It is suitable for research purposes and is currently being used in several
research projects, in The Netherlands and abroad. However, it is not suitable for use in an
operational, legal and financial setting. Therefore, the Ministry of Public Works and the
Environment has asked Deltares to develop a new operational tool for the safety assessment
of entire systems of flood defences. The computational algorithms of this new tool, called
Hydra-Ring, will be largely based on the algorithms of PC-Ring. The objective is to make
Hydra-Ring more user-friendely, robust, efficient, accurate, better documented, better tested,
more flexible and easier to maintain.

1.2 Purpose and scope of this document
The purpose of this document is to compile the scientific background of Hydra-Ring into one
document. The information in this document is provided for future users of Hydra-Ring as well
as developers. The scientific document is complementary to the Hydra-Ring design
document, in which the technical design of Hydra-Ring is described.

1.3 Global setup of Hydra-Ring
This document provides the details of the computational methods that are implemented in
Hydra-Ring to compute the probability of failure of a system of flood defences, which can be
composed of a number of segments. Segments can be e.g. dike segments, dune segments
or hydraulic structures. Failure of the flood defence system occurs if any segment within the
system fails. Failure of a flood defence can occur due to a number of failure mechanisms.
Failure at a segment occurs if the hydraulic load exceeds the resistance of the flood defence.
The hydraulic load typically consists of the combination of water levels and waves (and in
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some cases currents). In order to determine failure probabilities, the relevant statistical
features of the water levels and waves are required. Unfortunately, for most dike sections
there are no measurements available of these characteristics directly in front of the flood
defence. Statistics of water levels and waves therefore need to be estimated from other
sources. For this purpose, a hydraulic load model is required.

Hydra-Ring consists of three major building blocks:

1 Hydraulic load models, describing the probability of occurrence of the relevant range of
hydraulic loads (water levels, waves and currents) at various locations in different water
systems;

2 Failure mechanism models, describing under which load conditions a flood defence will
fail;

3 Probabilistic computation techniques, to quantify the probability of failure of a system of
flood defences, i.e. the probability that somewhere in the system the hydraulic load
exceeds the resistance of the flood defence.

Hydraulic
load

model

Resistance
model

Probabilistic
computation
techniques

Failure probability

Figure 1.1 The three main building blocks of the computational core of Hydra-Ring

The load and resistance are both described by statistical models to capture the uncertainties
that are involved. Uncertainties in the loads reflect the natural variability of the loads in
combination with incomplete knowledge of the system characteristics. Uncertainties in the
strength model mainly reflect incomplete knowledge of the system characteristics.

Figure 1.2 presents a schematic view of the stochastic nature of hydraulic loads and
resistance of the flood defence. Both graphs in this figure represent probability density
functions. It demonstrates that, in general, the resistance is higher than the load. However,
there is also some overlap between the two graphs, indicating there is a probability that the
load can exceed the resistance, in which case failure occurs. The probabilistic computation
techniques in Hydra-Ring serve to quantify this probability. In order to do so, the (statistical)
information of the load and resistance model is used as input. In practical terms this means
that during a probabilistic computation the load model and resistance model are evaluated a
(large) number of times, in order to quantify probabilities for the relavant range of load and
resistance values.
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Load Resistance

Figure 1.2 Schematic view of the stochastic nature of hydraulic loads and resistance of the flood defence. Both
graphs represent probability density functions

The three major building blocks of Hydra-Ring are all designed in a modular way. For
instance, a library of resistance models is implemented to consider all relevant failure
mechanisms, such as:

- overtopping and overflow;
- piping;
- sliding of the inner slope;
- revetment erosion and subsequent internal erosion;
- dune erosion;
- closing failures of hydraulic structures;
- structural failure of hydraulic structures;
- etc.

Due to the modular setup, additional failure mechanisms can be easily included. Similarly, a
library of load models is implemented to describe the hydraulic load of a variety of water
systems, such as:

- tidal rivers;
- non-tidal rivers;
- lakes;
- estuaries;
- seas.

The probabilistic model is also designed in a modular way. A library is created for [a]
probabilistic techniques to compute the probability of failure of one dike segment and [b]
probabilistic techniques to compute the failure probability of an entire system of flood
defences. The need for a set of probabilistic computation techniques stems from the fact that
each technique has its advantages and disadvantages with respect to criteria like
computation time, robustness and accuracy. The choice for the ‘best’ computation technique
is therefore dependent on the characteristics of the load model and resistance model under
consideration.

1.4 The role of Hydra-Ring in the safety assessment procedure of flood defences in the
Netherlands
Hydra-Ring will support the process of safety assessment of flood defence segments in the
Netherlands. For this purpose, Hydra-Ring will be incorporated in the software package
Ringtoets, the user-interface that is developed for the purpose of the safety assessment
procedure. Figure 1.3 shows the various tasks to be carried out in the safety assessment
procedure. Hydra-Ring is primarily designed to support the execution of tasks C1 en C2: the
fully probabilistic safety assessment of flood defences. Furthermore, Hydra-Ring will be used
to generate input of tasks B3 and B4: the semi-probabilistic safety assesment of flood
defences. Semi-probabilistic in this case means that failure mechanisms are subsequently
evaluated in a deterministic manner, using representative hydraulic boundary conditions that
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have been derived with a probabilistic computation procedure. The semi-probabilistic
approach is required for assessments for which a fully probabilistic procedure is [a] too time–
consuming or [b] requires input data that is not available. The semi-probabilistic procedure is
also useful as verification for the results of the fully probabilistic approach. Hydra-Ring will be
used to provide the hydraulic boundary conditions for the semi-probabilistic approach.

Figure 1.3 The tasks to be carried out in the safety assessment of primary flood defences in the Netherlands

1.5 Predecessors of Hydra-Ring
The design and implementation of Hydra-Ring is largely based on experiences with a number
of related probabilistic models for flood risk assessment, the most relevant of which are:

1 PC-Ring
2 The ‘Hydra-models’

PC-Ring can be considered to be the most direct predecessor of Hydra-Ring. As mentioned
in section 1.1, PC-Ring is the probabilistic computation tool that is one of the main results of
the research on the safety assessment of dike ring areas, that was carried out in the
Netherlands in the last decades. PC-Ring computes failure probabilities for flood defence
systems composed of dikes, dunes and hydraulic structures. Hydra-Ring can be considered
an improved version of PC-Ring, i.e. Hydra-Ring is more user-friendely, robust, efficient,
accurate, better documented, better tested, more flexible and easier to maintain.

The ‘Hydra-models’ have been developed within the framework of the six-yearly safety
assessment of primary flood defences in the Netherlands. The Hydra-models serve to derive
representative hydraulic boundary conditions (HBC) for all primary flood defences in the
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Netherlands. Representative means that a flood defence is approved if it is considered to be
able to withstand the HBC. Different Hydra-models were implemented for different water
systems, to take into account the differences in characteristics of the water systems: Hydra-R
for non-tidal rivers, Hydra-B for the tidal Rhine-Meuse delta, Hydra-M for the lakes area,
Hydra-VIJ, for the Ijssel-Vecht delta and Hydra-K for the coastal systems. Recently, the
Hydra-models for the inland water systems (Hydra-R, Hydra-B, Hydra-M and Hydra-VIJ) have
been merged into one model: Hydra-Zoet.

Figure 1.4 Different areas in the Netherlands for which hydra-models have been developed

Like Hydra-Ring and PC-Ring, the Hydra-models are probabilistic computation models in
which the loads are compared with the resistance of the flood defence. An important
difference is that the resistance in the ‘Hydra-models’ is modeled in a deterministic manner,
whereas in Hydra-Ring and PC-Ring the uncertainties in the resistance can be taken into
account. Furthermore, the Hydra-models only consider a small number of failure mechanisms
compared to PC-Ring and Hydra-Ring. Another difference is that the Hydra-models only
consider the probability of failure per cross section, whereas PC-Ring and Hydra-Ring
consider entire systems of flood defences.
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Despite the above mentioned differences between Hydra-Ring and the other Hydra-models,
there are also a lot of similarities. For instance the load models of the Hydra-models served
as the blueprint for the load models in Hydra-Ring (and also PC-Ring). Hydraulic loads as
computed with Hydra-Ring should therefore be (almost) the same as loads computed with the
Hydra-models. It is for this reason that the Hydra-models will be used as a vital reference in
this document, especially in describing the load models.

1.6 Outline
As described in section 1.3, the three major building block of Hydra-Ring are (libraries of)
probabilistic computation techniques, load models and resistance models. Chapter 2
describes the probabilistic computation techniques. Chapters 3 and 4 describe the load
models. Chapter 3 describes the generic setup of a load model in Hydra-Ring whereas
chapter 4 describes the load models of the primary water systems in The Netherlands, as
implemented in Hydra-Ring. Chapter 5 describes the resistance models and chapter 6
describes the library of statistical distribution functions that can be used to describe statistical
characteristics of random variables in both the load and the resistance models.
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2 Probabilistic computation techniques for system reliability

2.1 Introduction
This chapter describes the probabilistic computation techniques that are used in Hydra-Ring
for the computation of failure probabilities. Hydra-Ring computes the failure probability of a
flood defence system, which can be composed of a number of segments. Segments can be
e.g. dike segments, dune segments or hydraulic structures. Failure of the flood defence
system occurs if any segment within the system fails, and failure can occur due to a number
of failure mechanisms (see Chapter 5). Mechanisms and segments will be referred to as
components of the system. Hydra-Ring thus computes the failure of a system that consists of
a (large) number of components. The procedure is designed as follows:

1 determine the probability of all the individual components of the system, and
2 combine the failure probabilities of the components to derive the failure probability of the

entire system.

Section 2.3 describes probabilistic computation methods for the failure probability of the
individual components. Each of these methods has been implemented in Hydra-Ring in order
to increase the flexibility of the program. To support the description of the probabilistic
computation techniques in section 2.3, section 2.2 first describes some relevant terminology
in combination with a number of “basic” statistical computation techniques. Section 2.4
describes generic probabilistic techniques for deriving the failure probability of a system.
Section 2.5 describes the specific choices and methods for deriving and combining failure
probabilities as implemented in Hydra-Ring. Section 2.6 presents an overview of the whole
procedure that is applied in Hydra-Ring to derive the failure probability of a flood defence
system.

Note that the material in this chapter requires a basic knowledge of statistics and probability.

2.2 Basic techniques and terminology

2.2.1 Systems and components
As described in the previous section, Hydra-Ring computes the failure probability of a flood
defence system, composed of a number of dike segments, dune segments, and hydraulic
structures. In order to derive the failure probability of the system, the failure probabilities of
the individual components need to be combined. As will be described in sections 2.4 and 2.5,
this is a process that is far more complex than simple additions and/or multiplications of the
probabilities of individual segments. Furthermore, combining failure probabilities is not just
required for the individual segments of the defence system, but also for:

Failure mechanisms: A flood defence system can fail due to different failure mechanisms.
Time periods: failure probabilities are first computed for relatively small time scales (<1
day) in which the temporal variation of the relevant hydraulic variables (water level, wind
etc) is small enough to be assumed constant. However, the required output of Hydra-Ring
is an annual failure probability, which means failure probabilities of the smaller time
scales need to be combined (scaled-up) into an annual failure probability.
Cross sections: The probability of failure is first derived for a single location (cross-
section) of the flood defence segment. This probability is subsequently scaled up to a
failure probability of the entire flood defence segment.
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Closure scenarios of tidal barriers and wind directions: These are random variables that
cannot be included in the probabilistic computation of a single component, for reasons to
be explained in section 2.2.3. Therefore, the computed failure probabilities per wind
direction and per closure scenario need to be combined as well.

A single component in Hydra-Ring therefore refers to a selected combination of one cross
section, one failure mechanism, one wind direction, one closure scenario and one relatively
small (<1 day) time interval.

The probabilities of failure of the components are combined to derive the probability of failure
of the whole system. This is being referred to as system analysis. System analysis generally
deals with parallel systems, series systems or combinations of both. A parallel system refers
to  a  system in  which  failure  only  occurs  if  all  components  fail.  A  series  system refers  to  a
system where failure occurs if at least one of the components fails. This concept is
schematically depicted in Figure 2.1.

1

2

1 2

Parallel system series system

1

2

combination

3

Figure 2.1 Schematic view of a parallel system, series system and a combination of both.

In mathematical descriptions of system analysis, the symbols for ‘AND’, , and ‘OR’,  are
used as follows:

Parallel system: P[failure] = P[failure component 1  failure component 2]
Series system: P[failure] = P[failure component 1  failure component 2]

Where P stands for probability. Flood risk analysis generally deals with series systems. A
system of flood defences protects an area and failure (flooding) occurs if one or more
components (flood defences) fails. Nevertheless, parallel (sub)systems can occur as well. For
instance the failure mechanism ‘piping and heave’ only occurs if the two submechanisms
‘piping’ and ‘heave’ both occur.

2.2.2 Formulation of the probability of failure of a single component
The probability of failure for a single component can be written formally as follows:

( ( ) 0)fP P Z X (2.1)

where:

fP = failure probability
Z = limit state function
X  = vector of random variables

The limit state function, Z, defines failure in terms of load and strength variables such that
Z<0 represents failure. Function Z is often denoted:
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Z R S , (2.2)

where:
R = strength, or resistance
S  = Load

In case of a flood defence, the load typically consists of the combination of water levels and
waves and in some cases currents. The strength is a combination of dike characteristics that
reflect the ability of the dike to resists high loads. A simple example is overflow of a river
levee in a river (see Figure 2.2). The load in this simple example is the water level in the river,
hriver, and the strength of the levee is captured by its height, hlevee. The limit state function for
this example is simply:

levee riverZ R S h h (2.3)

Figure 2.2  Illustration of a river levee in danger of overflowing

The limit state function, Z, is a function of a number of random variables representing both
load and strength variables. The probability of failure can be written as follows:

1 ,..., 1 1 2
0 0

... ,..., ...
nf X X n n

Z Z

P f x x dx dx dx f dX x x , (2.4)

where f is the joint probability distribution of the random variables and X is the vector of X-
variables: X = (X1,…Xn). Note that random variables are typically denoted with a capital letter
(X), while potential realizations of the random variables are denoted with lower case letters
(x).

While an analytical solution to equation (2.4) would be ideal, it is typically not possible
because the Z-function is too complex. Therefore, the probability of failure needs to be
estimated with probabilistic computation techniques. Different techniques are available for this
purpose. These type of techniques will be described in detail in the section 2.3.
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2.2.3 Conversion between standard normal variables (U-domain) and real variables (X-domain)
In practice, it is often advantageous to carry out probabilistic analyses in a standardized
space, in which each of the variables are independent. This independence can help simplify
the probabilistic techniques. The dependence between variables is reintroduced when the
standardized variables are transformed back to the real variables. In Hydra-Ring the
standardized space that is used is the standard normal space. This means each of the
transformed random variables are normally distributed with mean 0, and standard deviation 1.
Each of the random variables in X can be transformed to independent standard normal
variables  U  =  (U1,…Un). The transformation is done such that the non-exceedance
probabilities are set equal. If all the X-variables are mutually independent, this transformation
can be described as follows:

1 1
i i i i i i i i iu F x u F x x F u , (2.5)

where:

= Standard normal distribution function

iF = Distribution function (cdf) of Xi, the ith variable in X
1 = Inverse standard normal distribution function
1

iF = Inverse distribution function of Xi, the ith variable in X

ix = Realization of the ith variable in X

iu = Realisation of the ith variable in U corresponding to the ith variable in X

The concept of this transformation is schematically depicted in Figure 2.3.

xi
*

ui*

Fi(xi* )

(ui* ) = Fi(xi*)

fi(xi)

(ui* )

(ui)

Figure 2.3 Schematic view of the transformation between standard normal variable ui and “real world” variable X
by means of equal probability of (non-) exceedance.
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If the X-variables are not mutually independent, i.e. they are correlated, the transformation
becomes more complex. In that case the transformation is done with the following conditional
probability functions:

1 1 1

2 2 2 1

1 1

|

| ,...,n n n n

u F x

u F x x

u F x x x

(2.6)

This transformation is referred to as the Rosenblatt transformation (Rosenblatt, 1952). The
conditional probabilities need to be derived from:

1

1 1

,..., 1
1 1

,..., 1 1

,...,
| ,...,

,...,
i

i

X X i
i i i

X X i

f x x
f x x x

f x x
(2.7)

In which fXi (x1,…xi) is a probability density function that is obtained from:

1 1 1,..., ... ,..., ...
iX i n i nf x x f x x dx dxX (2.8)

The combination of equations (2.7) and (2.8) potentially requires a cumbersome (numerical)
integration procedure. In Hydra-Ring, this process is far less complex as correlation is only
limited to pairs of variables. Generally, the pairs are split into a dependent variable and an
independent variable, and the dependent variable is written as a function of the independent
variable. The function consists of a fully deterministic dependent part and a probabilistic
independent part:

2

*
2 1 1 2 2|XF x x G x F x (2.9)

Where G is a deterministic function, F2 a probability distribution function and x2* a newly
introduced random variable that represents the part of variable x2 that is independent of x1.
This type of correlation models is schematically depicted in Figure 2.4. More details on this
type of correlation models are described in section 0. For now, it is important to note that with
a correlation model as described by the general form of equation (2.9), the transformation
from and to the u-space for variable X2 is done for the independent part:

*
2 2 2u F x , (2.10)
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Figure 2.4 Schematic view of correlated variables x1 and x2

Not all random variables can be represented in a meaningful way by u-variables. This is for
instance the case for “cyclic variables” like wind direction. The reason is that transformation
(2.5) only makes sense if large (extreme) u-values are associated with large (extreme) x-
values. Potential outcomes of cyclic variables are not “ordered” from small to large. The
domain for these variables is 1-360 degrees, but 360 degrees is not “larger” than 1 degree.
Actually, 1 degree is almost the same as 360 degrees. As will be discussed later on (section
2.5), cyclic variables in Hydra-Ring will be treated different from variables like wind speed,
river discharge and sea water level.

2.2.4 Reliability index
The reliability index, , is a measure for the reliability of a system, i.e. a measure for the
probability of failure of the system. Similar to the probability of failure,  is often defined for a
given period of time, e.g. a year. The reliability index is best explained by an example in
which the resistance, R, and load, S, of the system are both described as the sum of
independent normally distributed random variables. The sum of a set of independent normally
distributed random variables is also a random variable (see, e.g. Grimmett and Sirzaker,
1982). This means in this case, R and S are also normally distributed variables and the same
can be stated about the Z-function (Z=R-S). Define R, S and Z as the respective mean
values of R, S and Z and R, S and Z as the respective standard deviations of R, S and Z.
The following relations hold:

2 2
Z R S

Z R S

m m m

s s s

= -

= +
. (2.11)

Figure 2.5 shows an example with R=6, S=2, R = S=1 and consequently Z = 4 and
Z= 2. In reliability analysis, Z is generally a positive value because otherwise, failure (Z<0)

would occur even during “average” conditions. Since Z is normally distributed, P[Z<0] is equal
to:

( )0 1Z Z

Z Z

P Z
m m
s s

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
< = F - = -F (2.12)
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Where  is the standard normal distribution function. Based on this equation, the reliability
index, , is defined as:

Z

Z

m
b

s
= (2.13)
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Figure 2.5 Example of normally distributed S, R and Z functions with R=2, S=6, R =1, S=1, Z = 4 and Z= 2.

For the specific case where the Z-function is normally distributed, the relation between  and
the probability of failure is:

( ) ( ) ( )0 1P Z b b< = F - = -F (2.14)

Or inversely:

( )( )1 1 0P Zb -= F - < (2.15)
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Figure 2.6 Schematic view of the relation between the reliability index  and the probability of failure, P[Z<0].
Function  is the standard normal density function

This shows why the reliability index  is a measure for reliability. Note that if the Z-function is
not normally distributed, equation (2.14) does not necessarily hold. This is why  is  a
measure for reliability, not an exact representative of the probability of failure. Table 2.1
shows a range of -values and associated probabilities of exceedance.

Table 2.1 Values of reliability index  and associated probability of failure.

p

1.0 1.59E-01
1.5 6.68E-02
2.0 2.28E-02
2.5 6.21E-03
3.0 1.35E-03
3.5 2.33E-04
4.0 3.17E-05
4.5 3.40E-06
5.0 2.87E-07

Small values of  indicate large probabilities of failure, large values of  indicate small
probabilities of failure. This can be easily explained with some examples in which, for the
sake of simplicity, Z is assumed to be normally distributed. If =1, failure occurs if a random
sample of Z is more than 1* Z lower than the mean. The probability for this to happen is equal
to (-1) 0.16. On the other hand, if =4, failure occurs if a random sample of Z is more than
4* Z lower than the mean. The probability for this to happen is equal to (-4) 3.2*10-5. In
other words: larger values of  indicate that more extreme events are required for failure to
occur, hence a lower probability of failure, hence a larger reliability of the system.
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2.2.5 Linearisation of Z-functions
Z-functions in flood risk analysis generally describe a combination of hydrodynamics and
geotechnical processes. Due to the complexity of the Z-function it is sometimes practical to
use linear approximations. The linearization can result in significant reductions of the
computation time. This is for instance the case with the probabilistic computation method
FORM, (see section 2.3.6) which is generally much faster than other probabilistic computation
techniques such as Monte Carlo (see section 2.3.3).

Another advantage of the linearization is that it enables (semi-)analytical approaches to
complex system analysis, that otherwise would not have been possible. Such an approach is
for instance used in the ‘Hohenbichler method’ (see section 2.4.2) which is applied to
compute the total probability of failure of a system of components. In case of Hydra-Ring the
Hohenbichler method is applied to combine failure probabilities of dike sections in a dike ring
and to combine failure probabilities of different failure mechanisms.

The disadvantage of the linearization is of course the fact that it is an approximation of the Z-
function, which means an error is likely to be introduced in the estimate of the failure
probability. As long as this error is small compared to other modeling errors and uncertainties
this poses no real problem, but this needs to be verified as much as possible. First, the
linearization process is described.

The linearization of the Z-function is generally applied in the U-space, in which the U-
variables are independent standard normally distributed random variables. In other words: the
function Z(u) is linearized, where u is the vector of realisations, u1,  …  un, of the standard
normally distributed variables. The linear approximation of the Z-function has the following
form:

L 1 1 n nZ B Au A u= + + ¼ (2.16)

The linearization is done by taking the tangent of the Z-function in a selected location ud. This
means the A-values are chosen as follows:

( )
i

; 1..
Z

i d
A i n

u
= =

¶
¶

u (2.17)

This linearization process is depicted in Figure 2.7 and Figure 2.8.
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Figure 2.7 Example of function Z(u1, u2)

Figure 2.8 Linearisation of the Z-function of Figure 2.7 in a selected location (white dot).

Clearly, the linearised Z-function is different from the actual Z-function. This means an error
will be introduced in the estimation of the probability of failure, P(Z<0). To reduce this error as
much as possible, the linearization is generally done in the design point, ud.  This  is  the



1206006-004-ZWS-0001, 2 January 2013, draft

Hydra Ring Scientific Documentation 21 of 259

location on the hyperplane Z=0 with the highest probability density. The method FORM, as
described in section 2.3.6 is based on this principle.

Generally, the main objective is to compute the probability of failure, i.e. P(Z<0). In that case,
the right hand side of equation (2.16) can be multiplied or divided by a constant. If this
constant is taken to be the norm of vector A = (A1, … ,An) the linear Z-function has the
following form:

1 1
1

...
n

L n n i i
i

Z u u ub a a b a
=

= + + + = + å (2.18)

In which:

2

1

; , 1.. ;
n

i
i i

i

AB i n A A
A A

b a
=

= = = = å (2.19)

The norm of vector =( 1, … , n) is then equal to 1:

2

1
1i

n

i
a

=
=å (2.20)

This means the linearised Z-function has been “normalised”. Since the u-values are
independent standard normally distributed values, this means:

1
(0,1)

n

i i
i

Nua
=
å (2.21)

In other words: the sum of the product of -values and u-values, iui, is standard normally
distributed. This means that in order to compute P(ZL<0), iui can be replaced by a single
standard normally distributed value u*:

*LZ ub= + (2.22)

Note that, since the density function of U* is symmetric around u*=0, ZL can also be described
as:

*
L

Z ub= - (2.23)

In equation (2.22), failure occurs if ZL<0, i.e. if u*<- . The probability that this occurs is equal
to (- ), where  is the standard normal distribution function and  is the reliability index
which was introduced in section 2.2.4. While  is an indicator for the probability of failure, the

-values are indicators for the relative importance of the associated random variables, as will
be shown below. From equation (2.18) it can be seen that:
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= + å (2.24)

If we increase the mean of variable ui ( i) with a small value i this will have an effect on the
probability of failure. The magnitude of this effect is an indicator of the relative importance of
variable ui. For this purpose, define the random variable ui

’ as follows:

'
i i iu u (2.25)

Since ui is standard normally distributed, ui
’ is normally distributed with mean i and standard

deviation 1. Now we replace ui in equation (2.18) by ui
’ and consequently obtain a new Z-

function ZL’:

' '
1 1

1 1

1 1

... ...
... ...

... ...

L i i n n

i i i n n

i i i i n n

Z u u u
u u u

u u u
(2.26)

So the perturbation of the mean of variable ui results in a new Z-function with reliability index
’ instead of , with:

'
i i (2.27)

This means:

'
i

i i i
u

b b b b
a

e e
¶ ¶ -

= = =
¶ ¶

(2.28)

In other words: i is a measure of the sensitivity of reliability index  to changes in the mean
value of variable ui. This also means i is a measure of the sensitivity of the probability of
failure to changes in the mean value of variable ui. This characteristic is used in the
Hohenbichler method for combining probabilities of components in a system (see section
2.4.2).

As stated before, linearized Z-functions are the basis for various computation techniques that
are explained in the following sections. A full understanding of this linearization process and
the meaning of -values and  is therefore essential for further reading of the report.

2.3 Failure probability for a single component

2.3.1 Introduction
Equation (2.4) describes the general formulation of the probability of failure of a single
component. While an analytical solution to equation (2.4) would be ideal, it is typically not
possible because the Z-function is too complex. Therefore, the probability of failure needs to
be estimated with probabilistic computation techniques. The computation techniques
available within Hydra Ring are summarized in Table 2.2. Each of these techniques will be
described in detail in the current section. The reason to implement a set of probabilistic
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computation techniques in Hydra-Ring is that each technique has its (dis)advantages with
respect to criteria such as robustness, accuracy and required computation time. The “best”
technique to be applied therefore depends on the problem under consideration. Section 2.3.8
discusses the (dis)advantages of each of these techniques. First, the techniques are
explained individually.

Table 2.2 Computation techniques available in Hydra-Ring for the computation of failure probability of a cross
section of a longitudinal segment.

Method Variant
Numerical integration --

Monte Carlo
Crude
Importance sampling
Directional sampling

FORM (First order reliability method) --

2.3.2 Numerical Integration
Numerical integration solves equation (2.4) by discretizing the random variables X1…Xn. Each
variable is discretized over a range that is relevant for failure, and subsequently each
combination of discretized values of the X-variables is used to compute the limit state
function. The probabilities of all the combinations that lead to Z<0 are summed, which
provides the estimate of the overall probability of failure. This summation can be written as
follows:

1 2

1 2

0,1 1 1 0,2 2 2 0, 1 20
1 1 1

ˆ ... 1 0.5 , 0.5 ,..., 0.5 ...
n

n

mm m

f X n n n nZ
i i i

P f x i x x i x x i x x x x

,
DisplayText cannot span more than one line!

where

ˆ
fP = Estimated probability of failure

01 Z = Indicator function, equal to 1 for Z < 0, equal to 0 for Z  0

x0,k = Lower range limit for the kth variable
xk = Interval width of the kth variable

mk = Upper bound of k such that x0,k+ mk xk is the upper bound of the kth variable

In equation (2.29), for each variable Xk an equidistant grid with step size xk is used, but non-
equidistant grids can also be used in numerical integration. Figure 2.9 presents a schematic
view of the method, for an example of two random variables X1 and X2. A 2-dimensional grid
is defined and the Z-function is evaluated at the centre of the grid cells. Red grid points
indicate failure (Z<0), green grid points indicate no failure (Z 0). The total probability of failure
(see equation (2.29)) is estimated as follows: multiply the probability density of the grid cells
in the failure domain (red dots) with the size of the grid cells ( x1 x2) and take the sum of
these probabilities.
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X1
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Figure 2.9 Schematic view of the method of numerical integration for an example of two random variables. A 2-
dimensional grid is defined and the Z-function is evaluated at the centre of the grid cells. Red grid points
indicate failure (Z<0), green grid point indicate no failure (Z 0).

Like every probabilistic estimation technique, the result of the numerical integration procedure
will be an approximation of the actual probability of failure. The errors that are introduced in
this method are caused by the following assumptions and approximations:

1 Each grid cell is assumed to be entirely situated in the failure domain or entirely situated
outside the domain of failure domain. In reality, grid cells can be partly in the failure
domain as can be seen in Figure 2.9.

2 The probability density is assumed to be constant over the entire grid cell.
4 The domain of potential outcomes of the random variables may not be entirely covered.

In the implementation of the procedure, it may be beneficial to transform the X-variables to
standard normally distributed U-variables (see section 2.2.3). One of the benefits of working
in the U-space is that the U-variables are independent, which simplifies equation (2.29) as
follows:

1

1

0,1 1 1 0, 10
1 1

ˆ ... 1 0.5 ... 0.5 ...
n

n

mm

f n n n nZ
i i

P u i u u i u u u . (2.30)

where

ˆ
fP = Estimated probability of failure

= standard normal density function

0,ku = Lower range limit for the kth variable, in the u-space

ku = Interval width of the kth variable, in the u-space
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km = Upper bound of k such that 0,k k ku m u is the upper bound of the kth variable

2.3.3 Crude Monte Carlo
Crude Monte Carlo sampling refers to the repeated sampling the variables from the
multivariate probability distribution function fX(x) (or, if the variables are mutually independent,
sampling from the respective distribution functions fX1(x1),…, fXn(xn)). A single sample xi refers
to a vector of length n, where n is the number of random variables. For each sample xi, the
resulting value of limit state function Z(xi) is computed. The probability of failure is estimated
as the ratio of samples for which Z(xi) < 0, Nf, to the total number of samples, N:

1

I
ˆ

N
i

f i
f

ZN
P

N N

x
.

(2.31)

Where I is the indicator function, which is equal to unity when Z<0, equal to zero when Z 0.
Figure 2.10 shows a schematic view of the procedure for an example with two random
variables X1 and  X2. Each dot represents a sampled pair (x1,  x2). Red grid points indicate
failure (Z<0), green grid point indicate no failure (Z 0). The estimated probability of failure is
equal to the number of the red dots divided by the total number of dots.

X
1

X
2

Z=0

failure
no failure

Figure 2.10 Schematic view of Monte Carlo sampling for an example with two random variables. Each dot
represents a sampled pair (x1, x2). Red dots indicate failure (Z<0), green dots indicate no failure (Z 0).

The required number of samples, N, to provide a reliable estimate of the probability of failure
depends on the actual failure probability Pf and on the acceptable error in the estimate of Pf.
Additionally, it depends on the acceptable probability that the real error is within the accepted
range. This is because even though taking a large number of samples will most likely result in
small errors (law of large numbers), it can never be fully guaranteed due to the random
character of the Monte Carlo sampling. However, it is possible to take N large enough to
guarantee with e.g. 95% or 99% certainty that the error in the estimate is within the
acceptable range. This probability, pk, can be expressed as:
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; 0kp k k k . (2.32)

where  represents the standard normal distribution function, and k represents  a  sort  of
reliability index that the error is within the accepted range. The relation between k and pk is
schematically depicted in Figure 2.11.

Figure 2.11 Relation between k and pk according to equation (2.33). Function  is the
standard normal density function

For example, a probability of 95% would correspond with a k value of 1.96, because 95% of
samples from a standard normal distribution function have a value between -1.96 and 1.96. In
general terms, k is defined as:

1 1
2

kpk . (2.33)

Where pk is the desired probability that the actual error is within the defined acceptable range.
The required number of samples N can be estimated with the following formula (Melchers,
2002):

2

2

1 f

f

PkN
P

. (2.34)

Where  is the acceptable relative error in the estimate of Pf:

ˆ
f f

f

P P

P
(2.35)

Where ˆ
fP  is the Monte Carlo estimator of failure probability Pf.
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Note that the required number of samples depends on the failure probability, which is not
known in advance. Therefore, an estimate of the order of magnitude of the failure probability
must be assumed, which can subsequently be revised during the Monte Carlo sampling
procedure.

Table 2.3 shows the required number of samples for combinations of  and pf. The value of k
in this example is taken equal to 1.96. The numbers from this table show that, taking into
account that each sample involves an evaluation of the Z-function, crude Monte Carlo is a
rather inefficient method (i.e. a large number of Z-function evaluations is required) especially
for estimating small failure probabilities.

Table 2.3 Required number of samples with crude Monte Carlo for combinations of the acceptable relative error
and actual probability of failure pf. The value of k in equation (2.33) is taken equal to 1.96.

Pf 0.10 0.05 0.01
1E-02 4E+04 2E+05 2E+07
1E-03 4E+05 2E+06 2E+08
1E-04 4E+06 2E+07 2E+09
1E-05 4E+07 2E+08 2E+10

2.3.4 Monte Carlo Importance Sampling

2.3.4.1 General description
Importance sampling is a method to increase the efficiency of the crude Monte Carlo method;
that is, to decrease the number of samples and Z-function evaluations required to produce a
reliable estimate of the failure probability. This is done by replacing the initial probability
density, fX, of the input variables by a more efficient one, hX, in which “efficient” refers to the
proportion of the samples which will result in failure. An increasing percentage of samples in
the failure domain results in a reduction in the variance of the estimator of the failure
probability, hence a smaller number of samples is required for a reliable estimate.

There are a number of ways in which importance sampling can be applied; two of these are
described in this section. The first increases the variance of the density function, resulting in a
higher likelihood that failure events are sampled. The second essentially shifts the density
function towards the failure domain so that, again, the likelihood of a failure sample increases.
These two methods are illustrated in Figure 2.12; the left-hand side illustrates the concept of
a shifting of the density function, and the right-hand side illustrates the concept of increased
variance.
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Figure 2.12 – Concept of importance sampling; left shows the concept of density shifting, right shows the concept of
increased variance. The limit state function (LSF) is illustrated. Note that the LSF’s are linear in this figure,
but this is by no means a requirement for the applicaibility of importance sampling.

Because the sampling hasn’t taken place from the initial distribution, the typical estimator of
the failure probability (see equation (2.31)) needs to be corrected for this fact. This is done via
the following formula:
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x

x (2.36)

where Pf is the estimated probability of failure, I is the indicator function (equal to unity when
Z<0, equal to zero when Z 0), N is the total number of samples taken, fX is the density
function of x and hX is the importance sampling density function.

Equation (2.36) can be explained by comparing it with equation (2.31), which describes the
crude Monte Carlo method. In both equations, the indicator I is equal to one if the sampled
vector xi is in the failure domain and equal to 0 if xi is outside the failure domain. In the crude
Monte Carlo method, each sampled failure event “scores” a point and the more points scored,
the higher the estimated probability of failure. In the importance sampling method it needs to
be taken into account that the sampling of vector xi was influenced by the fact that the density
function was changed: hX(x) was applied instead of the real density function fX(x). This means
the probability of sampling xi was increased by a factor c = hX(xi)/fX(xi). This manipulation in
the density function needs to be compensated for in the “scoring”. Therefore, a sampled
event xi in the failure domain does not score a full point, but “only” 1/c = fX(xi)/hX(xi).

So, the difference between equation (2.36) and (2.31) is the correction term f/h. This
correction is necessary to make the estimate of Pf unbiased (provided h is well chosen) and
accordingly that the error in the estimate can be made as small as desired by taking a
sufficiently large number of samples, N. For importance sampling there is no simple generic
error estimate like equation (2.34) for Crude Monte Carlo sampling, because the error
estimate depends on the choice of hX(x). The efficiency of importance sampling therefore also
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depends strongly on the choice of hX(x). Prior knowledge of the problem under consideration
is therefore very valuable to be able to define an efficient importance sampling method.
Without such knowledge, there is even the potential danger that the important area for the
limit state function (LSF) will be missed.

2.3.4.2 Example: implementation of the method of increased variance
The implementation of this general formula in Hydra-Ring for the case of increased variance
will now be described. Equations (2.37) through (2.42) show how the formula programmed in
Hydra-Ring can be derived from the general expression in equation (2.36). A random
sampling of standard normal variables is first done; let’s refer to these variables as U1, where
U1 is the vector containing all the variables. Subsequently, each u1-value is multiplied by a
constant factor, a, to obtain a sample u = a*u1. Thus, the initial distribution of each u1-value is
standard normal. The new set of variables, U, then have a normal distribution with a mean
value equal to zero and a standard deviation equal to a. The general form of the normal
distribution is given below for reference.

2

22

1 exp
22

x
f x (2.37)

The ratio f(u)/h(u) is then derived as follows, shown for the case of one variable:
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Writing u in terms of u1, the equation becomes:
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(2.41)

Note that the one-variable example can easily be expanded to more variables, using the
property that the u-values are independent, and hence their probability densities can be
multiplied for the multi-variate case. The multi-variate form of equation (2.41) is:
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where k is the total number of random variables. Equation (2.42) is the form in which the ratio
is programmed in Hydra-Ring.

2.3.5 Monte Carlo directional sampling
Directional Sampling (see, e.g. Bjerager P [1988] and Ditlevsen, Melchers and Gluver [1990]),
also referred to as Directional Simulation, is a method in which “directions” are sampled. Like
importance sampling it is a type of Monte Carlo method which aims to (strongly) reduce the
number of samples in comparison with the Crude Monte Carlo method.

The concept of this method is schematically depicted in Figure 2.13. For each sampled
direction, it is evaluated where along this line the limit state function Z equals zero. This
procedure is repeated for a number of directions that is large enough to have enough
information on the limit state (Z=0) to provide a proper estimate of the probability of failure.

For convenience, this method is generally applied in the standard normal space, using
equations (2.5) to transform the standard normal variables U1…Un to their corresponding “real
world” variables X1…Xn, and vice versa. The sampling of a direction in the U-space is very
straigthforward.  First,  a  vector  u = u1,…,un is sampled, where each value ui, i=1..n is taken
from the standard normal distribution function. Subsequently, define a vector v as:

uv
u (2.43)

Clearly, v is a vector of unit length and with this procedure, each vector of unit length has an
equal probability density. For each of the sampled directions, v, the distance, , from the
origin to the limit state (Z=0) is derived. Subsequently, the probability of failure, P(Z<0), is
estimated as follows:

2 2

1

1ˆ ; where: 1
N

f i i n i
i

P P P
N

(2.44)

ˆ
fP = Estimated probability of failure
2
n = Chi-square distribution with n degrees of freedom (n=number of variables)

Pi = Contribution to the failure estimate of the ith sampled direction

i = Distance to the limit state (Z=0) in the ith sampled direction

N = Total number of sampled directions

Note that the Chi-square distribution with n degrees of freedom is the distribution function of
the sum of the squares of n independent standard normal random variables. This means that
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the probability that ||u|| i is described by this distribution function, which explains equation
(2.44).

The search procedure for the location on the line where Z=0 is often referred to as the “line
search algorithm”. This is an iterative procedure that is schematically depicted in Figure 2.13
and Figure 2.14. In both figures, the numbers 0..4 refer to successive Z-function evaluations
along one direction. Figure 2.13 shows 3 evaluated directions in the u-space, whereas Figure
2.14 shows the (fictional) value of the Z-function along one direction (where ||u|| is the
distance from the origin along the line). As long as the Z-function is “smooth”, generally only a
couple of Z-function evaluations are required to reach the location where Z is acceptably
close to 0. For instance, after evaluation 3, this location can be estimated by linear
interpolation between the results of evaluations 2 and 3. Sometimes a better estimate can be
provided by applying quadratic interpolation, using three previous Z-function evaluations.

Z=0
Selected directions

Z-function evaluations

u1

u2

1

2

34

Z<0

Z>0

0

Figure 2.13 Schematic view of the directional sampling method in the u-space. The numbers 0 ..4 show successive
Z-function evaluations along one direction.
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Figure 2.14 Schematic view of the line search algorithm.  is the distance from the origin in the u-space along one
direction. The numbers 0 ..4 correspond to the ones shown in Figure 2.14.

Similar to other Monte Carlo methods, the outcome of the estimated probability of failure is a
random variable and the error in the estimate can be made as small as possible by taking a
sufficient number of samples. For directional sampling, the standard deviation, , of the
estimated probability of failure can be quantified as follows (see, e.g. Grooteman, 2011,
Melchers, 2002, pp 84):

2

ˆ
1

1 ˆ
1f

N

p i f
i

P P
N N

(2.45)

From this equation, relative errors and confidence intervals can be estimated. Note that the
error in the estimated failure probability is a random variable that approaches a normal
distribution function, as N increases. This follows from the central limit theorem (see, e.g.
Grimmet and Stirzaker [1982]). As can be seen, the error in the estimated probability of failure
will decrease with increasing number of sampled directions. Equation (2.45) can be used to
determine the number of sampled directions that is required for a reliable estimate of the
failure probability.

Directional sampling has the advantage that, if the line search algorithm is implemented well,
it is a robust method and in many applications also very efficient (i.e. a low number of Z-
function evaluations). The method is less efficient if a large number of random variables are
involved.

2.3.6 First-order reliability method (FORM)
The term first-order refers to the linearization of the limit state function, as previously
described in 2.2.5. This linearization takes place at a location referred to as the design point.
A “location” in this case refers to a specific realization x1, …,xn of the X-variables, or u1, …, un
of the U-variables. The design point is the location along the limit state (Z=0) where the
probability density is maximal. This location is not known in advance and is determined via an
iterative procedure, which will be explained in this section.
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The FORM procedure is generally executed in the standard normal space (U-variables). The
standard normally distributed variables have by definition a mean value of zero and a
standard deviation of 1, and are mutually independent. The advantage of working in the
standard normal space is that in this space the design point has a clear interpretation.
Namely, in the standard normal space, the design point is the location along the limit state
(Z = 0) which is closest to the origin (see Figure 2.15 for an illustration). This can be easily
explained by the fact that for standard normally distributed variables the density is highest for
u=0 and decreases with increasing value of |u|. So in the u space the density decreases with
increasing distance from the origin. Therefore, the design point is the point along the limit
state that is closest to the origin.

Limit state
(Z = 0)

Design point

u1

u2 Z < 0

u2,d = - 2

u1,d = - 1

Figure 2.15 – Illustration of the design point in the u-space

The distance from the origin to the design point is equal to the reliability index  that was
introduced in section 2.2.4. This means if the location of the design point is known, the
reliability index, , is known and hence the estimated probability of failure can be derived from
equation (2.14). This is how the probability of failure is estimated in the FORM method. Note
that  this  is  an estimate, and not the precise probability of failure. This is because the limit
state function (Z=0) was linearized to provide the estimate. The error in the estimate therefore
depends on the extent in which the real limit state function is non-linear. This is illustrated in
Figure 2.16 below, where the solid line indicates the true limit state and the dashed line
represents the FORM approximation. The shaded area represents the true failure domain, the
area to the upper right of the dashed line is the assumed failure domain.

The reason why FORM in general provides good estimates of the failure probability is the fact
that the linearization is done in the design point, which means in the vicinity of the design
point the linear Z-function is a good approximation of the real Z-function. The design point is
the location on the limit state with the highest probability density. This means the failure
events with the highest probability of occurrence will generally be in the vicinity of the design
point. So, the linearised Z-function is generally a good approximation for the areas that matter
the most in terms of probability of failure.
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Limit state
(Z = 0)

Design point

u1

u2

Z < 0

FORM
approximation

Figure 2.16 – Illustration of the FORM approximation

As demonstrated in section 2.2.5, the linearized limit state function ZL is essentially a hyper-
plane and is described mathematically as follows:

1 1
1

...
n

L n n i i
i

Z u u ub a a b a
=

= + + + = + å (2.46)

Note that the -values have been normalized, as described in section 2.2.5. This means that
the sum of the squares of the -values is equal to 1. In the remainder of this report, -values
are always assumed to be normalized in case they are used as coefficients in an equation
with u-variables (unless mentioned otherwise). Given that the design point is the point along
the Z = 0 line that lies closest to the origin, the coordinates of the design point can be
determined using geometry as follows:

, ; 1..d i iu i n (2.47)

Where ud,i is the value of the ith random variable in the design point. As demonstrated in
section 2.2.4, the probability of failure can be estimated directly from the value of :

( ) ( ) ( )0 1P Z b b< = F - = -F (2.48)

Where  is the standard normal distribution function. In other words, once the design point is
known, the Z-function can be linearised as described in section 2.2.5, and subsequently the
probability of failure can be estimated from equation (2.48). The challenge in the FORM
procedure is therefore not to compute the failure probability but to locate the design point.

The procedure to locate the design point is described below. The procedure and formulas will
be presented in general form. Furthermore, the procedure will be clarified in a number of
figures for the following example Z-function:

0.8 1.2
1 2

Z 5  u u= -
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Where U1 and U2 are standard normal random variables. Figure 2.17 shows the contourlines
of this Z-function. Generally, these contour lines are not known in advance, otherwise the
search for the design point would be straightforward. Therefore, an iterative search procedure
is required. The procedure starts at a “user defined” starting location in the u-space and
jumps to a selected location in each following iteration step. In other words: in each iteration
step the location in the u-space is determined that will serve as the starting point for the next
iteration step. The procedure ends when the design point is found. Each iteration step
consists of the following five sub-steps:

The five steps in a FORM iteration.
[1] Linearisation of the Z-function in ut, where ut is the starting location of iteration t;
[2] Normalisation of the linearised Z-function in ut;
[3] Estimation of the location of the design point, based on the Z-function of step 2;
[4] Selection of location ut+1, which will serve as the starting location of iteration t+1;
[5] Verification if the iteration procedure has converged.

These five steps are described in more detail below. Note that location ut refers to a vector of
u values: ut = (u1

t,…,un
t).

[1] The starting location of each iteration, t, is determined in the previous iteration, t-1. The
starting location in the first iteration step can either be selected “arbitrarily” or by more
advanced methods in which the U-space is partially explored in advance of the FORM
procedure. In the current example the starting location in the first iteration step is chosen to
be ui=1; i=1...n (red dot in Figure 2.17).

In each iteration, first the Z-function is determined for the selected location at the beginning of
the iteration, i.e. Z(u1,…,un) is quantified. Subsequently, the Z-function is linearised in the
current location. For this purpose, the partial derivatives of Z to the individual U-variables are
quantified. Generally, the Z-function is too complex to have an analytical expression of the
partial derivatives, which means a numerical estimation technique is required. For this
purpose, the Z-function is evaluated for small perturbations ( u) of the u-values as shown in
Figure 2.18. The partial derivates can then be estimated as follows:

( ) ( ) ( )1 1

1

,..., ,..., ,...,
,..., ; 1..i i n n

n
i i

Z u u u u Z u uZ
u u i n

u u

+ D -¶
» =

¶ D
(2.49)

Note that equation (2.49) describes a one-sided discretisation method. Hydra-Ring actually
uses a two-sided method, in which also a negative perturbation is applied on ui:

( )
( ) ( )1 1

1

,..., 0.5 ,..., ,..., 0.5 ,...,
,..., ; 1..i i n i i n

n
i i

Z u u u u Z u u u uZ
u u i n

u u

+ D - - D¶
» =

¶ D (2.50)

A two-sided method is generally more robust, but requires approximately twice as much
computation time. The linearised Z-function is described by:

L 1 1 n nZ B Au A u= + + ¼+ (2.51)
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In which the A-values are the partial derivatives as derived in equation (2.49) and B is derived
by substituting the known Z-value in the current location (u1,…,un):

( )1 1 1 n n,..., ...Z nu uB Au A u- - -= (2.52)

The linearised function is (temporarily) assumed to be valid for the entire U-space. This
results in linear contour lines as shown in Figure 2.19.

[2] Subsequently, the linearised Z-function is normalized by dividing equation (2.51) by ||A||,
i.e. the norm of the A-vector (as earlier described in section 2.2.5). The normalized linear Z-
function is described as:

1 1 ...L n nZ u ub a a= + + + (2.53)

In which:

2

1

; , 1.. ;
n

i
i i

i

AB
i n A A

A A
b a

=

= = = = å (2.54)

The normalization changes the contour lines of the linearised Z-function (compare Figure
2.19 with Figure 2.20). The orientation of the lines is still the same, but the distances between
the contour lines have changed. The location of the contour line Z=0, however, remains the
same.

[3] From the linear contour lines it is easy to estimate the location of the design point. This is
done by drawing the line through the origin that is perpendicular to the contour line ZL=0 (see
Figure 2.21). In formula this means the estimated location of the design point is as described
in equation (2.47). The values of  and  in equation (2.47) are set equal to the ones derived
from equation (2.54).

[4] The estimated location of the design point can be chosen as the next location in the
iteration procedure. Note, however, that this is most likely not the actual location of the design
point, since it was derived from the linearised Z-function and not from the real Z-function. This
is the reason why the design point will not be located straight away, i.e. a number of iteration
steps are required. This is also the reason why in practical applications generally a relaxation
paramer, r, is used in each iteration step:

( )1 1t t t
d

r r+ = + -u u u (2.55)

In which:
t = iteration step
r = the relaxation parameter (0 r 1)
ut = the selected location at the beginning iteration step t
ut+1 = the selected location at the beginning iteration step t+1
ud

t = the estimated location of the design point in iteration step t

The functionality of the relaxation parameter can be explained as follows: in each iteration
step, the Z-function is linearised in location ut. The linearised function, ZL is the tangent of the
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actual Z-function at location ut. In the vicinity of ut, ZL is generally a good approximation of Z.
However, with increasing distance from ut, differences between Z and ZL may increase, as
can be seen from e.g. Figure 2.8. Since the estimated location of the design point, ud

t, is
based on ZL, this estimate may be unreliable if the distance between ut and ud

t is large. This
might even lead to non-convergence of the iteration procedure. It is therefore better to
prevent that the distance between two subsequent iteration steps becomes too large, and for
this reason the relaxation parameter is used. The relaxation parameter helps making the
iterative procedure more robust.

Figure 2.22 demonstrates the application of the relaxation parameter. It shows the location at
the beginning of the iteration,ut, (red dot), the estimated location, ud

t
, of the design point

(yellow dot) and the location at the beginning of the next iteration, ut+1 (green dot). Location
ut+1 is chosen somewhere on the line between the current location and the estimated location
of the design point. For values of r<0.5, ut+1 will be closer to ut for values of r>0.5, ut+1 will be
closer to ud

t.

[5] Figure 2.23 shows the resulting iteration steps of the example problem. The iteration
procedure continues until location ud

t satisfies the following 2 criteria:

( )
( ) 1

t
d t

L d

Z
Z

A
e= <

u
u (2.56)

2 2
t t t

db e b e- < < +u (2.57)

Where
1,2 = Small numbers, quantifying convergence criteria
t = Estimate of reliability index  in iteration step 2

Criterion (2.56) guarantees that the Z-function is sufficiently close to 0, i.e. that ud
t is on (or in

the neighbourhood of) the limit state Z=0. Note that for this purpose the value of Z is
normalized by dividing it by the norm of the vector of A-values. The second criterion
guarantees that the distance from ud

t to the origin is (approximately) equal to the estimated
reliability index beta, which makes ud

t the point on Z=0 with the highest probability density.

The FORM procedure has the advantage that it requires relatively little computation time, i.e.
a relatively small number of Z-function evaluations. The disadvantage of this method is that
the iterative algorithm sometimes does not converge and results are not always reliable. This
is especially the case if the Z-function is highly non-linear.



38 of 259 Hydra Ring Scientific Documentation

1206006-004-ZWS-0001, 2 January 2013, draft

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4 -10
-9

-8
-7

-6
-5

-5

-4

-4

-3

-3

-2

-2

-1

-1

-1

0

0

0

1

1

1

2

2

2

2

3

3

3

3

4
4

4

4

5
5

5 5 5

u1

u 2

Figure 2.17 Contour lines of the example Z-function and the starting location (red dot) of the FORM procedure
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Figure 2.18 Sampling the Z-function in all directions to estimate the derivative of Z to all u-variables.
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Figure 2.19 Contour lines of the linearised Z-function
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Figure 2.20 Contour lines of the normalised linearised Z-function
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Figure 2.21 Estimated location of the design point based on the normalised linearised Z-function
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Figure 2.22 Proces of relaxation. The red dot is the location of the current iteration step, the yellow dot is the
estimated location of the design point based on the normalised linearised Z-function. The green dot shows
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the selected location of the next iteration, which is somewhere on the line between the red dot and the
yellow dot.
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Figure 2.23 Resulting steps in the iteration procedure.

2.3.7 Computing  values for other methods than FORM
In the previous section it was demonstrated that the FORM procedure not only provides an
estimate of the probability of failure, but also a design point with a set of associated -
variables that provide information on the relative influence of the random variables on the
reliability index  (see also section 2.2.5 on the meaning of -variables). In section 2.4 it will
be demonstrated that these -variables are very practical for estimating failure probabilities of
systems that consist of a set of components.

The other probabilistic techniques that were described in the previous sections, i.e. numerical
integration and the various Monte Carlo techniques, do not provide -variables as output.
Nevertheless, there are methods available to estimate -variables for Monte Carlo methods
and numerical integration (see, e.g., Van Gelder [2002]). For example, for Monte Carlo, the
following methods can be applied.

1 centre of gravity
2 method of angles
3 nearest to the mean.

The third method can also be used for numerical integration, as will be explained below.
These methods all take into account the fact that the design point is the location in the failure
domain that is closest to the origin (in the U-space). For all methods, the quality of the
estimates increases with increasing number of samples. The methods are explained below:
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Centre of gravity

Suppose a crude Monte Carlo run is done with N samples of which M lead to failure. This
means there are M sampled combinations of u1, …un, for which Z(u1, …un)<0. For each of the
n random variables the mean value over the M failure-events is derived as follows:

1

1 ; 1..
M

j ij
i

u u j n
M

(2.58)

where uij is the ith “failure” sample of the jth random variable. The resulting point  = (  1,…, 
n) is the “centre of gravity” in the failure domain in the u-space. This is an estimate of the
“probability weighted mean” of the locations in the failure domain. Note that the actual
probability weighted mean is equal to:

0

1 ( )
0j U j

Z

u f u u du
P Z

(2.59)

From the estimated centre of gravity this location a line is drawn towards the origin in the u-
space (see Figure 2.24). The location where this line crosses the limit state (Z=0) is the
estimated location of the design point. This guarantees that the first characteristic of the
design point, i.e. that it is located on the limit state Z=0, is taken care of. The second
characteristic, that it is the location on the limit state with the highest density is not
guaranteed. However, the use of the centre of gravity makes that the estimated location of
the design point is likely to be close to the real design point. The likelihood increases with
increasing number of samples.

u1

u2

z=0

DP

UU

O

Figure 2.24 Schematic view of the method “centre of gravity”.

If importance sampling has been applied in the sampling procedure, the method needs to be
corrected for:

1

1 1

,...,1 ; 1..
,...,

M
U i in

j ij
i U i in

f u u
u u i n

M h u u
(2.60)
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Where fU is the probability density function of vector U and hU is the applied density function
of the importance sampling method.

Method of angles

The method of angles is similar to the method of centre of gravity. For each of the M samples
that lead to failure the angle with the origin in the u-space is derived. After completion of the
MC-procedure the “mean angle” of all M samples is derived. Note that the mean is derived
with respect to the sine and cosine of the angles of all samples.

Method “nearest to the mean”

In the method of “nearest to the mean” the distance to the origin of all samples in the failure
domain is derived:

2

1
; 1..

n

i ij
j

u u i M (2.61)

The sample with the smallest distance to the origin is taken to be the design point. This
method can also be applied for other Monte Carlo techniques (directional sampling,
importance sampling) and even for numerical integration. In the latter case, the design point
is taken equal to the grid point in the failure domain that is closest to the origin in u-space.

2.3.8 Rationale
In Hydra-Ring, a variety of probabilistic techniques has been implemented, including first- and
second-order reliability methods (FORM and SORM), various Monte-Carlo techniques (crude,
directional sampling, importance sampling) and numerical integration. Each of these
techniques requires a considerable number of evaluations of the Z-function at (randomly)
selected x-values. The choice of the most suitable probabilistic computation technique
depends on the problem under consideration.

If the computation time of one Z-function evaluation is significant, crude Monte Carlo and
numerical integration are generally not the preferred candidates because both methods
generally require a large number of Z-function evaluations. For crude Monte Carlo, the
required number of Z-function evaluations is inversely proportional to the failure probability.
This is because a small probability of failure means it takes a large amount of samples to
obtain even a single failure event and it takes more than one failure event to obtain a reliable
estimate of the failure probability. For numerical integration, the number of Z-function
evaluations is defined by the number of random variables and the number of grids for each
random variable. Generally, numerical integration is too time-consuming if more than just a
few random variables are involved. In theory, Monte Carlo and numerical integration are
exact methods but in practice some error can be expected because the number of Z-function
evaluations is limited.

Directional Sampling is a more advanced Monte Carlo method in comparison with crude
Monte Carlo. For most practical problems it reduces the amount of Z-function evaluations in
comparison with crude Monte Carlo. For a large number of random variables, the efficiency of
directional sampling decreases (see e.g. Waarts, 2000, pp 73). Importance sampling is
another efficient Monte Carlo variant. The efficiency of importance sampling is
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accommodated by prescience of the location of the limit state function. Without prescience,
the performance of importance sampling techniques is volatile.

FORM has the advantage that it requires relatively little computation time. The disadvantage
of this method is that the iterative algorithm to find the design point sometimes does not
converge or converges to a “local” design point. Furthermore, the Z-function is linearised in
the method, which means errors are introduced if the actual Z-function is highly non-linear.

Combining two different probabilistic methods may result in the combined advantage of the
underlying methods. For instance, a relatively fast method like FORM can be applied first to
locate the design point and subsequently a more precise method like importance sampling
can be applied to derive the probability of failure by sampling in the vicinity of the design
point. Or, vice versa, Monte Carlo sampling can be applied to provide a starting point for
FORM in the neighbourhood of the design point, to increase the chance that FORM
converges to the correct design point. This increases the robustness of the FORM procedure.
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2.4 Combining failure probabilities for components - generic methods

2.4.1 Introduction
In section 2.2.1, the concept of system analysis was explained, with special emphasis on
parallel systems (the system fails only if all components of the system fail) and series
systems (the system fails if one or more components of the system fail). The general
formulations of failure probabilities for parallel and series systems of k components are as
follows:

Series: 1
1 1

0 ... 0 0 1 0
k k

f k i i
i i

P P Z Z P Z P Z (2.62)

Parallel: 1
1 1

0 ... 0 0 1 0
k k

f k i i
i i

P P Z Z P Z P Z (2.63)

If the events [Zi<0], i=1..k are mutually independent, this can be simplified to:

Series:
1

1 1 0
k

f i
i

P P Z (2.64)

Parallel:
1

0
k

f i
i

P P Z (2.65)

The failure probabilities, P[Zi<0], for the individual components are determined by the
probabilistic computation techniques as described in section 2.3. System analysis for mutually
independent components is therefore a relatively straightforward procedure. However, if the
components are mutually correlated, the complexity of the system analysis increases. The
correlations need to be taken into account as it increases the probability of failure of parallel
systems and decreases the probability of failure of series systems. The following sections
describe various general techniques that can be applied to carry out system analysis for
systems with mutually correlated components.

2.4.2 Combining n components: the Hohenbichler method

2.4.2.1 Introduction
The Hohenbichler method initially is a method for computing conditional probabilities of two Z-
functions: P(Z2<0|Z1<0), taking into account the mutual correlation between these two Z-
functions. The application of this method can be extended to compute failure probabilities of:

[1] A parallel system of two components;
[2] A series system of two components;
[3] Parallel and series systems of multiple components.

This is explained as follows:
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[1] A parallel system with two components refers to a system in which both components must
fail in order for failure to occur (keyword: AND). That is, the probability of failure is given as
follows:

1 2( ) 0 0P F P Z Z . (2.66)

A parallel system and the schematization of the associated failure probability (P(Z1<0  Z2<0)
is schematically depicted in Figure 2.25 below.

Figure 2.25  Failure domain for a parallel system of two components – the shaded area indicates the area that
contributes to the failure probability.

The failure probability of this system can be written equivalently as the product of a probability
and a conditional probability:

1 2 1( ) 0 0 | 0P F P Z P Z Z . (2.67)

The first term, P(Z1<1) can be computed with the methods as described in section 2.3. The
second terem, P(Z2<0|Z1<0), can be determined with the Hohenbichler method, as will be
demonstated in subsequent sections. This shows that the Hohenbichler method can also be
applied to compute the failure probability of a parallel system of two components.

[2] A series system with two components refers to a system in which at least one component
must fail in order for failure to occur (keyword: OR):

1 2( ) 0 0P F P Z Z (2.68)

This probability can be rewritten as follows:
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1 2 1 2 1 2( ) 0 0 0 0 0 0P F P Z Z P Z P Z P Z Z . (2.69)

The first two terms on the right hand side of equation (2.69) describe failure probabilities of
single components, which can be derived with the techniques that were described in section
2.3. The last term describes a parallel system of two components, for which the
computational method was described in [1]. This shows that the Hohenbichler method can
alos be applied to compute the failure probability of a series system of two components.

[3] Consider a series system of n components. The failure probability for the system is given
by:

1 2 3( ) ( 0 0 0 ... 0)nP F P Z Z Z Z (2.70)

If we define Z12=Z1 Z2, this equation can be rewritten as an arbitrary system of n-1
components:

12 3( ) ( 0 0 ... 0)nP F P Z Z Z (2.71)

Repeating this procedure n-1 times will result in a system of one component. So, the
probability of failure for a system of n components can be derived by the successive
combining of combinations of two components. The method of Hohenbichler can be used to
combine two components, as demonstrated above, and therefore it can also be used to
combine n components off a series system. A similar approach can be applied for a parallel
system of n components. In other words: successive application of the method can than be
used to compute the probability of failure of a system of n components, which is what is
required in Hydra-Ring for computing the probability of failure for a dike ring system with
multiple dike sections and failure mechanisms.

The basic principles of the Hohenbichler method for computing the conditional probability of
failure of two components is described in section 2.4.2.2. The follow-up sections elaborate on
some of the finer details.

Note: the Hohenbichler method makes use of linearization of the Z-functions, as described in
section 2.2.5. The probability of failure for a system as derived by the method of Hohenbichler
is therefore an approximation of the real probability of failure. Errors made in the
approximation will depend on the system under condideration.

2.4.2.2 Probability of failure for a parallel system of two components
As stated in the previous section, the Hohenbichler method initially is a method for computing
conditional probabilities of two Z-functions: P(Z2<0|Z1<0), taking into account the mutual
correlation between these two Z-functions. Suppose the following information is available
from the single component probabilistic analysis as described in section 2.3:

 The reliability index 1 of Z1
 The reliability index 2 of Z2

 The influence variables, , for each random variable involved.

This means we can formulate the two Z-functions in the standard linearised form (see section
2.2.5):
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1 1 11 11 1 1... n nZ u u .
(2.72)

2 2 21 21 2 2... n nZ u u

Where uij refers  to  the  jth random variable of the ith Z-function. The U-variables can be
different for the different Z-functions. However, for the sake of simplicity, we assume for the
moment that they are the same:

1 2 ; 1..k ku u k n . (2.73)

Later on, in section 2.4.2.4 the slightly more complex case will be dealt with in which u1k u2k.
Since u1j and u1k,  j k, are mutually independent, it can easily be verified that the correlation
between Z1 and Z2 is equal to:

1 2 1 2
1

,
n

j j
j

Z Z (2.74)

The linearised Z-functions can be written (see section 2.2.5) as follows:

1 1 1Z u
(2.75)

2 2 2Z u

Where u1 and u2 are potential realizations of two newly defined standard normally distributed
variables U1 and  U2. Because the -values in equation (2.75) are constant, the correlation
between the components Z1 and Z2 is equivalent to the correlation between the variables U1
and U2:

1 2 1 2, ,Z Z U U (2.76)

In other words, equation (2.75) is only valid in this case if U1 and U2 are mutually correlated
with correlation coefficient . To assure that this is the case, u2 is written as a function of u1:

2
2 1 2

* 1u u u . (2.77)

In this equation, u2
* is also standard normally distributed and independent of u1. The first term

in this equation represents the dependent part of u2 and the second term represents the
independent part. Note in equation (2.77) that if  = 1, then u2 = u1 (100% correlated), and if
= 0, then u2 = u2* (100% uncorrelated).

To verify the applicability of equation (2.77) it needs to be shown that [1] u2 is standard
normally distributed and [2] that u1 and u2 have a mutual correlation coefficient that is equal to
. To prove [1], we apply the following general rule (see, e.g. Grimmett and Sirzaker, 1982): If

X and Y normally distributed random variables, then aX+bY is also normally distributed with a
mean, , and standard deviation, , equal to:



1206006-004-ZWS-0001, 2 January 2013, draft

Hydra Ring Scientific Documentation 49 of 259

2 2 2 2

X Y

X Y

a b

a b
(2.78)

Application of this rule on equation (2.77), where u1 and u2* are both normally distributed with
mean 0 and standard deviation 1, gives:

2
2

2 2
2

0 1 0 0

1 1 1 1

u

u

(2.79)

Which proves that u2 is standard normally distributed. To prove [2], the correlation coefficient
between u1 and u2 is derived. The correlation coefficient of u1 and u2 is defined as:

1 2 1 2
1 2 1 2

1 2

cov , cov ,
, cov ,

1 1
u u u u

u u u u
u u (2.80)

The covariance of u1 and u2 is equal to:

1 2cov ,u u 1 2 1 2E u u u u = 1 2E u u

2
1 1 2

* 1E u u u (2.81)

2 * 2 2 2
1 1 2 1 11E u u u E u E u

Which proves that the application of equation (2.77) preserves the correlation between U1
and U2 and hence the correlation between Z1 and Z2. The combination of equations (2.75)
and (2.77) provides the following description for Z2:

2
2 2 1 2

* 1Z u u . (2.82)

This expression represents a line in the Z2 = 0 plane. The hatched area in Figure 2.26
indicates the area in the u-space that contributes to the failure probability
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Figure 2.26  The Z1 = 0 and Z2 = 0 contours in the u-space; hatched area indicates the area that contributes to the
failure probability.

Using the expressions for Z1 and Z2 (equations (2.75) and (2.82)), the conditional probability
(i.e. the second term in equation (2.67)) can be rewritten as follows:

2
2 1 2 1 2 1 1

*0 | 0 1 0 | 0P Z Z P u u u . (2.83)

So with the assumption of linearity of functions Z1 and Z2 of two components that are
combined, the conditional probability of failure, P(Z2<0|Z1<0)  can  be  written  in  the  form  of
equation (2.83). At first sight this does not seem to be a simplification, but nevertheless it
helps to process the conditional part as will be explained below.

Consider a realisation, u1, from a standard normal distribution, for which: 1-u1 >0, i.e. u1> 1.
Even though u1 comes from a standard normal distribution, the information that u1> 1
changes the probability distribution, i.e. P[U1<u1 |  U1 > 1]  P[U1<u1]. To show in which way
the information that u1> 1 changes the probability distribution, consider the basic law for
conditional probability:

| |
P A B

P A B P A B P B P A B
P B

(2.84)

If A is the event that U1>u1 and B is the event that U1> 1, then:

1

1

1 1 1
1 1 1

1 1

|
P U u U

P U u U
P U

(2.85)
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The numerator in this equation is equal to:

1

1 1 1 1
1 1 1

1 1 1 1

;
;

P U u
P U u U

P U u u
(2.86)

Since 1 is known, we can define the following constant, p:

1
1 1 1 1p P U p , (2.87)

Where  is the standard normal distribution function. Substitution of equations (2.87) and
(2.86) in equation (2.85) gives:

1

1 1

1

1

1 1 1 1 1
1

1 ;

| 1
;

u

P U u U P U u u
u

p p

(2.88)

The probability of the complement then becomes:

1

1

1

1

1 1 1 1 1
1

0 ;
| 1 1

1 ;

u
P U u U u p u

u
p p

(2.89)

Taking the derivative to u1 in equation (2.89) gives the probability density function:

1

1

1

1 1

1

1 1 1 1
1

|

0 ;
|

;U

u
f U u U u

u
p

(2.90)

Where  is the standard normal density function. This equation shows the influence of the
information that u1> 1 on the probability of the outcome of u1. The density function for values
of  u1 1 becomes 0, which is obvious, since we know that u1> 1.  For  values  of  u1> 1 the
original probability density is increased by a factor 1/p. The concept of this change in density
function is clarified in Figure 2.27. The top panel shows the original probability density of u1,
the bottom figure shows the probability density of a newly defined variable u1’,  which has a
density function as described in equation (2.90). For the variable u1’, the probability density
for values lower than 1 is zero, since the condition u1 > 1 has been incorporated. Essentially
the probability density of u1’ is the tail of the distribution of the variable u1 above the threshold

1, where the values have been scaled such that the area under the curve is equal to 1.

The concept of the Hohenbichler method is to take a random sample u1’ from the density
function (or associated distribution function) as described in equation (2.90). The sample u1’,
which is by definition greater than 1, replaces the value of u1 in equation (2.83). By this
replacement, it is guaranteed that the sample will have a value that is higher than 1. This
means that the conditional statement in equation (2.83) can be left out. Equation (2.83) thus
changes into:
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' 2
2 1 2 2 1 2

*'0 | 0 0 1 0P Z Z P Z P u u (2.91)

The conditional probability with two Z-functions has now been replaced by a description with
a single Z-function Z’. Note that in order to derive equation (2.83), the only approximation that
was applied is the assumption that Z1 and Z2 are both linear.

Figure 2.27  Processing the conditional part of failure probability: ‘given u1 > 1’ .

In order to simulate a sample u1’ from the probability density as shown in the lower panel of
Figure 2.27 and as described in equation (2.90), the following sampling method can be used:

1
1
' 1u p v , (2.92)

Where  is the standard normal distribution function and v is a sample from the standard
normal distribution function. This can be proven as follows: Variable v is standard normally
distributed, in notation: v~N(0,1). As a concequence, (v) is standard uniformly distributed:

(v) ~U(0,1). This means that p (v) ~U(0,p) and 1-p (v) ~U(1-p,1). In other words, u’ can be
written as:

1
1
' 'u p (2.93)
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Where p’ is a sample from a uniform distribution over the interval [1-p,1]: p’~ U(1-p,1). This
clearly shows that u1’ is a sample from the right tail of the standard normal distribution
function. From equation (2.87) we know:

1
1 1 p (2.94)

Which shows that 1 is the lowest possible outcome of u1’.  This proves that u1’ is a sample
from the probability density as shown in the lower panel of Figure 2.27. Equation (2.92) can
be used in combination with equation (2.91) to express the new function Z2’:

1 2
2 2 2

*' 1 1Z p v u (2.95)

Thus the probability of failure of a parallel system (see equation (2.67)) reduces to:

1 2 1 2 1 1 2
'( ) 0 0 0 0 | 0 0 0P F P Z Z P Z P Z Z P Z P Z (2.96)

Where Z2’ is given in equation (2.95). This equation is a multiplication of failure probabilities of
two single components Z1 and  Z2’. These probabilities can both be determined with the
techniques as described in section 2.3. Note that Z2

’ consists of two independent standard
normally distributed random variables v and u2*. The probability, p(Z2’<0) is therefore
relatively easy to compute and can be evaluated with all techniques of section 2.3 with little
computation time.

So the essence of the Hohenbichler method is to write a conditional probability of failure as a
product of failure probabilities of two single components. The method is designed to compute
failure probabilities of parallel systems: P(F) = P(Z1<0  Z2<0). However, through application
of equation (2.69) it can also be used to compute failure probabilities of series systems: P(F)
= P(Z1<0  Z2<0).

The only approximation that is required to apply the Hohenbichler method is the assumption
that Z1 and Z2 are both linear functions. Naturally this introduces some error if Z1 and Z2 are
non-linear. Furthermore, errors will be introduced in computing the individual failure
probabilities of Z1 and Z2’. However these errors can be made as small as desired by using
for instance a Monte Carlo approach with sufficient number of samples (see section 2.3.3 for
reference).

Another option is to use numerical integration to compute the probability of failure of Z2, given
failure of Z1. The required formulas for this approach are described below. First, consider the
following general formulation for conditional failure probability:

2 1
2 1

1

0 0
0 | 0

0
P Z Z

P Z Z
P Z

(2.97)

From equation (2.75) it can be seen that Z1<0 if and only if u1> 1. This means:

2 1 1 2 1 1
2 1

1 1 1

0 0
0 | 0

P Z u P Z u
P Z Z

P u
(2.98)
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Substitution of equation (2.82) in equation (2.98) gives:

2 *
1 1 2 1 1

2 1
1

1 0
0 | 0

P u u u
P Z Z (2.99)

The numerator can be computed by integration over all potential realsiations of U1> :

1

2 *
1 1 2 1 1

2 1
1

1 0
0 | 0

P u u u du
P Z Z

(2.100)

The probability in the numerator can be rewritten as follows:

2 * * 1 1
1 1 2 2 2

* 1 1 1 1
2 2 2

1 0
1

1 1

uP u u P u

u uP u

(2.101)

Substitution of equation (2.101) in equation (2.100) gives:

1

1 1
1 12

2 1
1

1
0 | 0

u u du

P Z Z
(2.102)

Note that this can also be written as:

1

1 1
1 12

2 1
1

1
0 | 0

u u du

P Z Z
(2.103)

Both equations (2.102) and (2.103) can be solved by numerical integration.

2.4.2.3 Derivation of equivalent -values
The previous section describes the Hohenbichler method for combining the probability of
failure of two single components. The result is the combined probability of failure. The goal of
a systems approach to failure probability is to combine the failure probabilities of all the
contributing components to determine the failure probability of the whole system. This
combining of probabilities takes place in a sequential fashion. That is, first two components
are combined into one component, and this new component is then combined with an
additional component, and so on, until only one component (the entire system) remains.
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The combining of failure probabilities over components relies on -values, see equation
(2.74). This means we require -values for Z1 Z2, in order to be able to quantify the
correlation with a third component, Z3. The required -values are reffered to as equivalent -
values. Basically, we require a Z-function description, Ze, that represents the combined
components Z1 and  Z2. This Z-function needs to have the same probability of failure as Z1
and Z2:

1 2( 0) 0 0eP Z P Z Z (2.104)

The equivalent -values should be such that they describe this Z-function in the standard
linearised way:

1 1 ...e e e e
n nZ u u . (2.105)

The superscript “e” in this equation refers to the fact that these are equivalent values and
functions. The equivalent value e is the reliability index that is derived with the Hohenbichler
method as described in section 2.4.2.2. In order to derive the -values of function Ze, recall
from section 2.2.5 that the -values of a Z-function are related to the reliability index  as
follows:

e e
e
i

i i
u

b b
a

e
¶ ¶

= =
¶ ¶

(2.106)

Where i represents a small change in i (=the mean value of variable ui). Recall from
equation (2.15) that:

( ) ( )( )( ) ( ) ( )( )( )1 1
1 2

1 0 1 0 0e eP Z P Z Ze e e eb - -== F - < F - < È < (2.107)

Note that e and all Z-functions are written as a function of  to show that they depend on the
choice of . The equivalent -value, i

e, can be derived from:

( ) ( )( )( )1
1 2

1 0 0
e

e
i i i

i i

P Z Zb
e e

e e
a -¶ ¶ é ù= ê úê ú¶ ¶ ë û

= F - < È < (2.108)

Generally, Z-functions are too complex to derive equation (2.108) analytically. Therefore a
numerical approach is required in which the mean of variable ui is perturbed by a small value

i and subsequently the change in the value of e is quantified. Consider the linear Z-function
of the 2 components:

1 1 1... ... ; 1,2k k k ki i n nZ u u u k (2.109)

Now we increase the mean of variable ui with a small value of i. For this purpose, define the
random variable ui

’ as follows:

'
i i iu u (2.110)
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Since ui is standard normally distributed, ui
’ is normally distributed with mean i and standard

deviation 1. Now ui in equation (2.109) is replaced by ui
’, and consequently two new Z-

functions Zk( i), k=1..2 are obtained:

'
1 1

1 1

1 1

... ... ; 1,2

... ... ; 1, 2

... ... ; 1,2

k i k k ki i kn n

k k ki i i kn n

k ki i k ki i kn n

Z u u u k

u u u k

u u u k
(2.111)

The change in e as a result of the change in the mean of ui is quantified by substituting Z1
and Z2 by Z1( i) and Z2( i) in equation (2.107). From equations (2.109) and (2.111) it follows:

; 1,2k i k ki iZ Z k (2.112)

and therefore:

0 ; 1,2k i k ki iP Z P Z k (2.113)

Substituting Z1 and Z2 by Z1( i) and Z2( i) in equation (2.107) therefore results in:

( ) ( )( )1
1 2

1e
i i i i i

P Z Ze e eb a a-= F - < - È < - (2.114)

Where e( i) is the resulting equivalent reliability index as a function of a small perturbation i
in the mean value of ui. So, to derive the change in the value of e as a result of a change in
the mean of variable ui we need to quantify the following probability:

( )1 2i i i i
P Z Ze ea a< - È < - (2.115)

This probability can be quantified again by the Hohenbichler method (or alternative methods
for combining two components). The equivalent -value of variable ui is subsequently
estimated from:

( )e e
ie

i
i

e
a

e

b b-
= (2.116)

This procedure needs to be repeated n times, to derive the n equivalent -values. The result
of this procedure is an equivalent Z-function, as described in equation (2.105), that represents
the two Z-functions Z1 and Z2.

Figure 2.28 shows an example of two Z-functions, Z1 and Z2, and the equivalent Z-function,
Ze. The variables of the Z-functions are displayed in Table 2.4. The failure probability P(Z1<0

 Z2<0) as derived with the Hohenbichler method in this example is equal to 6.120*10-3,
whereas the failure probability based on Monte Carlo sampling with 108 samples (i.e. a very
accurate method) is equal to 6.121*10-3. Note that in this example the Hohenbichler method
was also evaluated with a very accurate procedure (Monte Carlo with 105 samples) in order to
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compute P(Z’<0), with Z’ according to equation (2.95). As a consequence, the error in the
Hohenbichler method in this case is less than 0.02%. This error can be made even smaller by
taking more Monte Carlo samples.

This shows that the Hohenbichler method in principle is an exact method for combining 2
lineair Z-functions (linear as a function of the u-variables). However, errors will be introduced
[a] if the real Z-functions are non-linear or [b] when combining more than 2 components
(because then the equivalent -values get involved) or [c] when FORM is used instead of
Monte Carlo to compute P(Z’<0), with Z’ according to equation (2.96).

Table 2.4 Description of the Z-functions of Figure 2.28.
Function Before normalization After normalisation
Variable: 1 2 1 2

Z1 -2 -1 6 -0.89 -0.45 2.68
Z2 -1 -2 6 -0.45 -0.89 2.68

Figure 2.28 Replacement of “Z1 < 0 U Z2 < 0” with “Ze < 0”. Failure domains of the three Z-functions are on the
upper right side of the respective lines.

2.4.2.4 Hohenbichler method for the general case of partial correlation
In the previous sections, Z1 and Z2 were functions of the same variables U1,…Un. In the
current section the more general case is considered:

1 1 11 11 1 1... n nZ u u .
(2.117)

2 2 21 21 2 2... n nZ u u
Where uik refers to the kth random variable of the ith Z-function. In this case, variables U1k and
U2k are partially correlated. All other correlations are equal to zero:
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12
1 2

;
,

0 ;
k

j k

j k
u u

j k
(2.118)

For components 1 and 2, the kth random variable (i.e. u1k and u2k)  in  principle  refer  to  the
same load or strength variable, but the sampled values can be different because they refer to
different components. For instance, the kth variable may refer to the thickness of a clay layer.
This thickness will be different for different dike segments. The correlation between Z1 and Z2
now becomes:

1 2 1 2 12
1

,
n

k k k
k

Z Z (2.119)

The system as described with equations (2.117) and (2.118) represents for instance the case
where two neighbouring dike segments are combined. In that case the variables u1k and u2k
both describe the same load or strength variable, but the realizations of the two samples are
not necessarily the same. Note that equation (2.117) also covers the case in which the two Z-
functions depend on different sets of random variables, for instance because two dike
segments are combined that are situated along different water systems, or if one component
is a dike segment and the other one is a dune segment. In that case, the combined sets of
random variables will be used in equation (2.117) and some of the -values will be equal to
zero.

In order to determine the probability of failure P(Z1<0  Z2<0), the exact same method as
described in section 2.4.2.2 is used. So, the combined set of equations (2.96) and (2.95) are
solved, using the correlation coefficient of equation (2.119) as input for equation (2.95). In
order to derive the equivalent -values, the procedure becomes somewhat more complicated
than the procedure with full correlation that was described in section 2.4.2.3. The approach is
to describe the U-variables of Z2 as a function of the u-variables of Z1:

2
2 1 12 2 12

* (1 ) ; 1..k k k k ku u u k n (2.120)

The first term in this function represents the part of u2k that is fully correlated to u1k, the
second term describes the part that is fully uncorrelated to u1k.  Variable  U2k* is standard
normally distributed and independent of variable U1k. To verify the applicability of equation
(2.120) it needs to be shown that [1] U2k is standard normally distributed and [2] that U1k and
U2k have a mutual correlation coefficient that is equal to 12k. Note that this was proven earlier
in the follow-up of equation (2.77). Inserting the expression for u2k, given by equation (2.120),
into the formula for Z2 (equation (2.117)) gives:

2 2
2 2 21 11 121 21 121 2 1 12 2 12

* *(1 ) ... (1 )n n n n nZ u u u u (2.121)

which can be written more compactly as follows:
2

2 2 2 1 12 2 12
1

* (1 )
n

k k k k k
k

Z u u (2.122)

Note that the expression for Z1 in equation (2.117) can also be written more compactly as
follows:
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1 1 1 1
1

n

k k
k

Z u (2.123)

The procedure for determining the equivalent -values is similar to that introduced for the
case of full correlation (section 2.4.2.3). So again, an equivalent Z-function of the following
form is derived:

1 1
1

...
n

e e e e e e
n n k k

k

Z u u u . (2.124)

The major difference with section 2.4.2.3 is that the random variable uk in equation (2.124)
will represent the two variables u1k and u2k of the functions Z1 and  Z2. So, essentially an
equivalent -value is computed for the two random variables u1k and  u2k and these are
subsequently combined into a single equivalent -value. Actually, for practical reasons,
equivalent -values are computed for u1k and u2k* because they are mutually independent.

The first  step is  to  derive the partial  derivative of e to  u1k.  Similar  to  section 2.4.2.3 this  is
done by quantifying the change in e as a result of a small perturbation in the value of u1k. e

is related to the two Z-functions as follows:

1
1 21 0 0e P Z Z (2.125)

Substituting equations (2.122) and (2.123) into equation (2.125) gives:

1 2
1 1 1 2 2 1 12 2 12

1 1

*1 0 (1 ) 0
n n

e
k k k k k k k

k k

P u u u (2.126)

A small perturbation, I
k , on the mean value of u1k will have the following effect on e:

1
1 1 2 2 12( ) [1 { }]e I I I

k k k k k kP Z Z , (2.127)

This value can be computed once again with the Hohenbichler method (or alternative
methods for combining two components). The equivalent -value for variable u1k can than be
obtained from:

( )e I e
I k
k I

k

(2.128)

Subsequently a similar sensitivity analysis is done for u2k*. A small perturbation, II
k , in the

mean value of u2k* has the following effect on e (see equations(2.125) and (2.126)):

1 2
1 2 2 12( ) [1 { 0 1 }]e II II

k k k kP Z Z (2.129)
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This value can be computed once again with the Hohenbichler method (or alternative
methods for combining two components). The equivalent -value for variable u2k* can than be
obtained from:

( )e II e
II k
k II

k

(2.130)

The two derived -values can then be combined as follows:

2 2e I II
k k k (2.131)

This is the required equivalent -value for the kth random variable in the combined Z-function
Ze. Equation (2.131) can be explained as follows. The Z-functions of the two components, Z1
and Z2 are a function of mutually independent standard normally distributed variables u11,
u21

*,  …  ,  u1n,  u2n
* (see equations (2.117) and (2.122)). For each of these variables an

equivalent -value was derived: 1
I, 1

II,… n
I, n

II. This means the combined Z-function of
the two components can be written as follows:

* *
1 11 1 21 1 2

*
1 2

1

...e e I II I II
n n n n

n
e I II

k k k k
k

Z u u u u

u u
(2.132)

If we compare this equation with equation (2.124) it is clear that the “new” random variable uk
replaces the pair of random variables u1k and u2k

* and also that the equivalent -value, k
e,

replaces k
I and k

II.This can only be done if the standard deviation of k
euk is equal to the

standard deviation of: k
Iu1k+ k

II u2k
*. This is the case if we chose k

e according to equation
(2.131).

Note 1: application of equation (2.131) will result in a value of k
e that is non-negative. For

load variables this is incorrect, as they have negative -values. Therefore, for load variables,
k
e should be taken equal to:

2 2e I II
k k k (2.133)

If it is not known whether the kth variable is a load variable, this information can be obtained
by reading the sign of 1k and 2k.

Note 2: since the equivalent -values are derived numerically, the sum of the squares of the
equivalent -values may differ from 1. In that case an additional normalization step is
required:

;
2

1

; 1..
e

e k
k final n

e
j

j

k n
(2.134)
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2.4.2.5 System with arbitrary number of components
We have just considered the case of probability of failure of a parallel system of two
components. In this section we extend the concept to an arbitrary number of components.
Suppose we have an arbitrary system of n components. The failure probability for the system
is given by:

1 2( ) ( 0 0 ... 0)nP F P Z Z Z (2.135)

An example is the computation of the failure probability due to the mechanism overtopping
over n defense segments. The function Zi is the limit state function for component i and the
occurrence Zi < 0 indicates failure of component i.

The procedure of combining is to first combine two components, so that the problem with n
components reduces to a problem with n-1 components. The next step combines two
components again so that the problem reduces to one with n-2 components, and continues in
this fashion until only one component remains, where this last component represents the
entire system.

The order of the combination is important. The determination of equivalent -values,
discussed in the previous section, is an approximating method, which makes the entire
combination procedure an approximating method. The accuracy of the resulting failure
probability is influenced by the sequence in which the components are combined. The most
accurate results are obtained by combining the most correlated components first. This is
clarified by the example below with three Z-functions in Table 2.5 and Figure 2.29.

Table 2.5 Description of the Z-functions of Figure 2.29
Variable

Function 1 2

Z1 -1 0 2
Z2 0 -1 2
Z3 -1 0 2.5
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Figure 2.29 Functions Z1, Z2 and Z3 of the current example

In this example, functions Z1 and Z3 are mutually fully correlated, whereas they are fully
uncorrelated with function Z2. We will demonstrate that the best strategy is to first combine
the two correlated Z-functions (Z1 and Z3). First of all the exact solution for this relatively easy
example is derived. It is clear from Figure 2.29 that if Z3<0  Z1<0. This means:

1 3 1( 0 0) ( 0 )P Z Z P Z (2.136)

And therefore:

1 2 3 1 2( ) ( 0 0 0) ( 0 0 )P F P Z Z Z P Z Z (2.137)

Since Z1 and Z2 are independent, the failure probability is equal to:

2
1 2 1 2 1 2( 0 0) 1 ( 0 ) ( 0 ) 1 1 2 0.045P Z Z P Z P Z (2.138)

If we combine Z1 and Z3 first with the Hohenbichler method, the exact same result is obtained.
If we combine Z1 and Z2 first, the estimated failure probability is equal to 0.0482, whereas if
we combine Z2 and Z3 first, the probability of failure is equal to 0.0492. This demonstrates that
in this example indeed the best strategy is to first combine the two components with the
largest mutual correlation. To understand why this is the case, Figure 2.30 shows the
equivalent function, Ze of Z1 Z3. This function turns out to be exactly the same as Z1. Recall
from equation (2.136) that this means that Ze is an exact representation of Z1 Z3.

Figure 2.31 shows the equivalent function, Ze of Z1 Z2. Clearly, this function is a compromise
between Z1<0 Z2<0 and it is clear why this introduces some errors after combining with
function Z3<0 (for instance because Z3 now defines part of the failure domain, whereas in the
original problem statement it was redundant).
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Figure 2.30 Function Z2 and the equivalent Z-function of Z1 Z3.

Figure 2.31 Functions Z1=0, Z2 =0 and the equivalent Z-function of Z1<0 Z2<0.

Figure 2.32 helps illustrate the concept of combining components with the largest mutual
correlation, with an example. Shown are four components with reliability functions Z1, Z2, Z3,
and Z4. Let functions Z1 and Z2 be the most strongly correlated. These two components are
then first combined and replaced by the equivalent reliability function Z2

e. For the three
remaining components, the correlations between them are again computed. Consider the
case where Z3 and Z4 are now the most correlated; the following step will be the combination
of Z3 and Z4, resulting in the equivalent reliability function Z4

e. The final step is the
combination of Z2

e and Z4
e.
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Figure 2.32 Example of combining failure probabilities over four components

2.4.3 Upscaling for systems with identical components: numerical integration with constant
correlation

2.4.3.1 Computation of failure probability
Upscaling refers to combining failure probabilities over “identical components”. Upscaling is
distinguished from the more generic Hohenbichler combination techniques because the
components being identical allows for some convenient simplifications. Identical in this case
refers to the fact that the components have the same failure probability (i.e. the same
reliability index ) and they are mutually correlated with the same correlation coefficient :

; 1..

, ;
i e

i j

Z i n

Z Z i j
(2.139)

Where ne is the number of components,  is the correlation coefficient and Zi is the Z-function
of component i. Note that in general, the components also have in common the underlying set
of random variables and the associated -values, but that is not a necessary condition for
applying the method as described in this section.

Examples of when upscaling may be applied are the combining of failure probabilities at one
time scale to a larger time scale  and upscaling failure probabilities from a cross section of a
defense segment to the longitudinal extent of the segment. Such applications are described in
section 2.5. The value of  first needs to be determined based on knowledge of the system.
This will be discussed in section 2.5 where applications of the method in Hydra-Ring are
discussed. For now,  is assumed to be known.

The upscaling method makes use of linearized approximations of the Z-functions, as
described in section 2.2.5. The estimated probability of failure of the system wil therefore be
an approximation of the actual probability of failure. Errors made in the approximation will
depend on the system under condideration. In section 2.2.5 it was shown that linearised Z-
functions can be described as follows:

1 1 ... ; 1...i i n in eZ u u i n (2.140)

Furthermore, it was shown that the sum of the product of -values and standard normal u-
values can be replaced by a single standard normal u-value:
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; 1...i i eZ u i n (2.141)

Where ui is a standard normally distributed variable and  is the reliability index. The value of
 is considered to be known, i.e. it is determined by the probabilistic computation techniques

as described in section 2.3. This means  is a constant in equation (2.141) and the mutual
correlation of the Z-functions is therefore entirely determined by the mutual correlation of the
U-variables:

, , ;i j i jZ Z U U i j (2.142)

To describe a system that satisfies the relation of equation (2.142), variable ui is written as a
function of two independent standard normal random variables ui* and v:

* 1i iu u v (2.143)

The variables Ui*, i=1..n are taken to be mutually independent:

* *, 0 ;
i j

u u i j (2.144)

Note 1: there is difference between equation (2.143) and equation (2.77), where  is used
instead of , even though in both cases the correlation between u1 and u2 is equal to . The
reason for this difference is the fact that in in equation (2.77), variable u2 is  written  as  a
function of u1,  whereas in  this  case,  u1 and u2 are both written as a function of a separate
variable v.

Note 2: in equation (2.77) it is assumed that  >  0.  For  0 the Hohenbichler method
together with the outcrossing approach should be used.

To verify the applicability of equation (2.143) it needs to be shown that [1] ui is standard
normally distributed and [2] that the relation of equation (2.142) holds. To prove [1], we apply
the following general rule (see, e.g. Grimmett and Sirzaker, 1982): If X and Y are normally
distributed random variables, then aX+bY is also normally distributed with a mean, , and
standard deviation, , equal to:

2 2 2 2

X Y

X Y

a b

a b
(2.145)

Application of this rule on equation (2.143), where ui* and v are both normally distributed with
mean 0 and standard deviation 1, gives:

1 0 0 0

1 1 1 1
(2.146)

Which proves that ui is standard normally distributed. To prove [2], i.e. that the relation of
equation (2.142) holds, equations (2.141) and (2.143) are combined:
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* 1 ; 1...i i eZ u v i n (2.147)

The variable v in equation (2.147) is part of each Z-function. This creates the desired mutual
correlation between the functions Zi, i=1..ne. To prove this, it needs to be shown that variables
ui and uj, i j, have a mutual correlation equal to . The correlation between ui and uj is derived
as follows:

cov , cov ,
, cov ,

1 1
i j i j

i j i j
i j

u u u u
u u u u

u u
(2.148)

The covariance of ui and uj is equal to:

cov ,i ju u i j i jE u u u u . (2.149)

* *1 1i j i jE u u E u v u v

* * * * 21 1 1i j i jE u u u v u v v
2 20 0 0E v E v

This proves that equation (2.147) describes a system of ne components that are mutually
correlated with a correlation coefficient . The theorem of total probability is used to derive the
probability of failure of this system:

1 1( ) 0 ... 0 0 ... 0 |n n
v

P F P Z Z P Z Z v f v dv (2.150)

Where f(v) is the density function of the standard normal distribution. The probability that at
least 1 component fails is equal to 1 minus the probability that none of the components fails.
Equation (2.150) can therefore be rewritten as:

1

1

( ) 1 0 ... 0 |

1 0 | ... 0 |

n
v

n
v

P F P Z Z v f v dv

P Z v Z v f v dv
(2.151)

For a given value of v, the individual failure probabilities of the Z-functions are mutually
independent:

0 | 0 | 0 | 0 | ;i j i jP Z v Z v P Z v P Z v i j (2.152)

This can be easily verified from equation (2.143). If the value of v is given, equation (2.143)
only contains one random variable: ui*. Since the ui*-values are mutually independent (see
equation (2.144)), the Z-functions of equation (2.143) are mutually independent as well, which
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leads to the equality in equation (2.152). Implementation of equation (2.152) in equation
(2.151) gives:

1

1 0 |
en

i
iv

P F P Z v f v dv (2.153)

Because all components are identical, the following is true:

1 20 | 0 | ... 0 | 0 |n

def
P Z v P Z v P Z v P Z v (2.154)

This changes equation (2.153) into:

1 0 |
v

enP F P Z v f v dv (2.155)

The conditional probability of the Z-function in the integral is equal to:

* *0 | 1 0
1

vP Z v P u v P u (2.156)

Since v is a given constant, u* is the only random variable in equation (2.156), and since u* is
standard normally distributed, the conditional probability is equal to:

*0 |
1

vP Z v (2.157)

Where  is the standard normal distribution function and * is equal to:

*

1
v

(2.158)

Equation (2.155) then changes into:

( ) 1 1 * ( )
n

v

P F f v dv , (2.159)

Equation (2.159) can be solved by numerical integration over the standard normal variable v.
Since v is the only variable, the grid size of v can be chosen small without requiring significant
computation time. The error from the numerical integration of equation (2.159) can therefore
be as small as desired. This means the only potentially significant error that is introduced in
this method is related to the linearization of the Z-function, which was necessary to derive
equation (2.159).
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2.4.3.2 Equivalent alpha-values
As with the Hohenbichler method, equivalent -values can be computed for the component
that represents the combination of ne identical components. This is necessary in case the
resulting component is used in subsequent combining procedures where -values are
required. A similar approach with perturbed u-values is used as in the Hohenbichler method.
However, because in this special case the components are identical, this allows for some
convenient simplifications that require less computation time.

Consider, again, the system of ne identical components as described in equation (2.140):

1 1 ... ; 1...i i n in eZ u u i n (2.160)

These components are combined according to the method as described in section 2.4.3.1,
resulting in a failure probability and associated reliability index e. The combined component
can be described by (similar to equation (2.120)):

1 1 ...e e e e
n nZ u u . (2.161)

The superscript “e” in this equation refers to the fact that these are equivalent values and
functions. In order to derive the -values of function Ze, recall from section 2.2.5 that the -
values of a Z-function are related to the reliability index e as follows:

; 1..
e

e
k

k

k n
u

b
a

¶
= =

¶
(2.162)

In which i is  the mean of  variable ui. Note the value i
e represents the combined effect of

variables ui1..uin, and that these variables are mutually correlated. In order to determine i
e,

these variables need to be split in an independent and mutually dependent part, similar to the
description in section 2.4.3.1. Consider for this purpose equation (2.160). The different u-
values within a single component are mutually uncorrelated, whereas corresponding u-values
in different components can be correlated. In formula:

, 0 ;

, ;
ij ik

ik k k

U U j k

U U i
(2.163)

Each u-variable can therefore be split in a correlated and uncorrelated part:

* 1ik ik k k ku u v (2.164)

In which uik
* and vk are realizations of mutually independent standard normally distributed

variables Uik
* and Vk. Furtermore, the variables Uik*, i=1..ne, k=1..n and vk, k=1..n are all taken

to be mutually independent:
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* *

*

, 0 ;

, 0

, 0 ;

ij k

ij k

j k

U U i j k

U v

v v j k

(2.165)

With this formulation, variables Uik, i=1..ne, k=1..n, automatically fulfill requirement (2.163), as
can be shown in the same manner as shown below equation (2.144) in the previous section.
Substituting equation (2.164) in equation (2.160) gives:

* *
1 1 1 1 1

*

1 1

1 ... 1 ; 1...

1 ; 1...

i i n in n n n e

n n

k ik k k k k e
k k

Z u v u v i n

u v i n
(2.166)

This equation can be replaced by:

* 1 ; 1...i i eZ u v i n (2.167)

In which:

2

1

* *

1

1

1 1 ; 1..
1

1

n

k k
k

n

i k ik k e
k

n

k k k
k

u u i n

v v

(2.168)

The validity of this replacement can be easily verified by substituting the formulations of ui
and v of equation (2.168) into equation (2.167). Equation (2.167) is similar to equation (2.147)
if and only if Ui* and V are mutually independent standard normally distributed variables. The
mutual indepencey can easily be shown since all components U ik*, i=1..ne, k=1..n, and vk,
k=1..n are mutually indepenedent (see (2.165).

To  verify  if  Ui* and V are standard normally distributed we apply the following general rule
(see, e.g. Grimmett and Sirzaker, 1982): If X and Y are normally distributed random variables,
then aX+bY is also normally distributed with a mean, , and standard deviation, , equal to:

2 2 2 2

X Y

X Y

a b

a b
(2.169)

Application of this rule on equation (2.168), where all components Uik*  and  Vk are normally
distributed with mean 0 and standard deviation 1, gives:
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1
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2 2 2 2

1 1 1

1 0 1 0

1 11 1
11

1 1 1 1
1

n

i k k
k

n n n

i k k k k k
k k k

U

U (2.170)

This  shows  that  Ui* and V in equation (2.167) are mutually independent standard normally
distributed variables. Taking into account the formulation of the Z-function in equation (2.167),
The equivalent coefficient k

e can now be derived as follows

e e e
e
k

k k k

u v
u u u v u

(2.171)

Where , v  and  k are the mean values of variables U*, V and Uk. So, the derivation of
coefficients k i=1..ne it comes down now to determining the four partial derivatives of
equation (2.171). The first two can be determined directly from equation (2.168):

1
1

k k

k

k k

k

u
u

v
u

(2.172)

The partial derivative of e to v  is determined numerically:

( )e ee
v

v
v

v

eb
a

e

b b-¶
= »

¶
(2.173)

In which e( v) is the reliability index of the of the upscaled system of ne components, after
perturbation of v  with a small value v.

( ) ( )( )( ) ( )( )1 1

1

1 0 1e e
v v i v

i

en

P ZP Ze e eb - -

=

æ ö÷ç ÷ç= ÷ç ÷ç ÷çè ø
= F - < F - (2.174)

In which function Zi( v) is as follows:

*

*

1 ; 1...

1 ; 1...

i v i v e

v i e

Z u v i n

u v i n
(2.175)
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In other words: Zi( v) is a Z-function with reliability index - v . So e( v) is quantified by
substituting equation (2.175) into equation (2.174) and subsequent application of the
upscaling procedure of section 2.4.3.1. Subsequently, e( v) is substituted in equation (2.173)
in order to derive v the partial derivative of e to v . The next step is to derive the artial
derivative of e to . This can be derived as follows:

2
21 1

e e

vu v
(2.176)

This can be exlained as follows: the partial derivative of e to v  is the resulting -value for
the dependent part of the ne components, represented by variable V. The partial derivative of

e to  is the resulting -value for the independent part of the ne components, represented by
variable U*. The sum of the squares of these alpha-values should be equal to 1. Substitution
of equations (2.172), (2.173) and (2.176) into equation (2.171) provides the requested
equivalent -values:

2 1
1

1

e
k k k ke

k v v
ku

(2.177)

The Z-function of the resulting component from the upscaling procedure (equation (2.161))
needs to have a standard deviation equal to 1. This means the sum of the squares of the
equivalent -values shoud be equal to 1. Equation (2.177) guarantees that this is the case if
all values of k are equal to either 0 or 1, which is generally the case for upscaling in time (i.e.
slow varying random load variables and strength variables have an autocorrelation equal to 1,
fast varying random variables have an autocorrelation equal to 0). This can be deducted as
follows:

2 22 2 2 2

1 1

2 2
2 2

1

2 2
2 2

1 1

2 2
2 2

11
1 2 1

1 1

1
1

1

1
1

1

1
1 1 1

1

n n
k k k kk ke k k

k v v v v
k k

n
k k k k

v v
k

n n
v v

k k k k
k k

v v
v v

(2.178)

Note: in the second step of this equation, the middle term is removed because is is equal to
zero (since either k=0 or 1- k = 0). In the fourth step, equation (2.168) is used. If not all
values of k are equal to either 0 or 1, the sum of the squares of the equivalent -values is not
necessarily equal to 1. In that case, they have to be normalized:
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2

1

; 1..
e

e k
k n

e
k

k

k n
(2.179)

To summarise, the method for deriving equivalent -values is as follows:

1 Apply the upscaling method of section 2.4.3.1 on the ne components with reliability index
 and mutual correlation  to derive the reliability index e of the combined (upscaled)

component.
2 Apply the upscaling method of section 2.4.3.1 on the ne components with reliability index

- v  and mutual correlation  to derive the reliability index e( v) of the combined
(upscaled) component.

3 Determine v through application of equation (2.173).
4 For all all random variables k=1..n, determine the value of k

e through application of
equation (2.177).

5 Normalise the equivalent -values

The equivalent -values of the n variables for the combined ne components are derived after
only two applications of the upscaling method (steps 1 and 2 above). This is very efficient,
taking into account that the Hohenbichler method needs to be repeated 2n+1 times to derive
the equivalent -values for combining only two components.

2.4.4 System analysis with Monte Carlo methods or numerical integration
The methods described in sections 2.4.3 and 2.4.2 rely on linear approximations of Z-
functions of the individual components, which automatically introduces errors in the estimated
failure probability of the system. Errors made in the approximation will depend on the system
under condideration. If these errors are considered to be unacceptable, a systems approach
based on Monte Carlo or numerical integration techniques is an alternative. However, these
alternatives generally require computation times that are unacceptably large, which is why for
larger systems often the approximative techniques of the previous sections are applied. This
is also the reason why this method has not been implemented in Hydra-Ring to compute the
probability of failure of the entire system. Nevertheless it is (briefly) described in the current
section for Monte Carlo for the purpose of completeness.

Consider the general formulation of the failure probability for a series system, consisting of m
components:

1 11 1 1 1
1

,..., 0 ... ,..., 0 ,..., 0
m

f n m m mn i i in
i

P P Z u u Z u u P Z u u (2.180)

In which uij is the jth variable of the Z-function of the ith component. For different components i
and k,  the jth random variable (i.e. uij and ukj) in principle refer to the same load or strength
variable, but the sampled values can be different because they refer to different components.
For instance, the jth variable may refer to the thickness of a clay layer. This thickness will be
different for different dike segments.

The crude Monte Carlo approach is to sample N sets of variables Uij, i=1..m, j=1..n and then
to quantify the percentage of sets for which failure occurs anywhere in the system:
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; ,..., 0
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k

f k i i k ink
i

Z
P Z Z u u

N
(2.181)

In which:
uijk = the kth sample of the jth variable of the Z-function of the ith component.
I[Z<0] = 1 if Z<0, 0 otherwise.
Zk* = the Z-function for the kth “event”

The N samples basically represent N “events”, although the sampling may also involve
variables that represent the uncertainty in the resistence of the flood defence system. This
crude Monte Carlo procedure seems straightforward, but in the sampling procedure the
mutual correlation of the various components needs to be taken into account. For this
purpose, similar techniques as in the previous sections can be applied, i.e. two variables of
neighbouring components can be related to each other according to equation (2.147) or
equation (2.77).

Numerical integration can be theoretically an alternative to Monte Carlo, but since
computation times increase an order of magnitude for each additional random variable, this is
no serious option in system analysis.

2.4.5 Techniques for time and space dependent processes

2.4.5.1 Introduction
The techniques described in the previous sections all deal with system analysis of a discrete
number of components which may represent dike sections, wind directions, etc. In some
applications, however, Z is a function of space and time, which means in principle the number
of components is infinite. This is schematically depicted in Figure 2.33. In the left panel, Z is a
time-dependent function and failure potentially can occur at any time. On the right, Z is a
function of space, and failure can occur at any location.

Z(t)=R(t)-S(t)Z Z Z(x)=R(x)-S(x)

failure failure

t x
Figure 2.33 Stochastic variation of the Z-function in time (left) and space (right)

This section describes some approaches to deal with these type of continuos descriptions of
Z-functions.

2.4.5.2 Poisson counting process
The Poisson counting process describes the probability of occurrence of N events, where a
single event generally refers to an upcrossing or downcrossing of a threshold value. With
respect to failure, the downcrossing of the threshold Z=0 is most relevant. In a Poisson
process it is assumed that for small values of t [a] the occurrence of an event in a interval [t,
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t+ t] is proportional to t and [b] the probability of occurrence of two events occurring in [t,
t+ t] is negligible. This means for small values of t, the probability of an event occurring in [t,
t+ t] is approximately equal to:

1event during ,P t t t t (2.182)

In this equation,  is the ‘intensity’ of the Poisson process. This is the single parameter that
describes the Poisson process. Define N(t) as the number of events occurring in the time
interval [0,t]. For a Poisson process the probability distribution of N(t) is:

( )
!

n tt e
P N t n

n
(2.183)

The time interval between two subsequent events is also a random variable and it is
exponentially distributed. So if t1 is the time interval between two events, then:

1
1 1 1 tP T t e (2.184)

The assumption of a Poisson process is often used to translate exceedance frequencies into
exceedance probabilities. Suppose  is expressed as “number of events per year”. In that
case  is the annual frequency of occurrence. Then, according to equation (2.184), the annual
probability of occurrence is equal to:

1 1 1P T e (2.185)

This shows the relation between probability and frequency in case of a Poisson process. An
event can be for instance the exceedance of a threshold level x, for load variable X. In that
case, equation (2.185) can be applied to translate the annual frequency of exceedance of
threshold x into the annual probability of exceedance of threshold x, or vice versa.

In the description above,  was assumed to be time-independent. If this is not the case,
equation (2.183) changes into:

0

0( )
!

t
nt d

d e
P N t n

n

(2.186)

2.4.5.3 Outcrossing
If an event refers to failure in a continuous process, i.e. the downcrossing of threshold Z=0 in
Figure 2.33, then the outcrossing rate is defined as:

0 0lim
0

P Z t Z t t
v t t

(2.187)

Note that the numerator in this equation is the probability that failure occurs in time interval
[t,t+ t]. The rate  is similar to the one defined in the previous section and can also be time-
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dependent: = (t). Assume for the moment that  is a constant, i.e. independent of time. The
probability that failure occurs in an interval (0,T], given the fact that no failure occurs at t=0, is
then equal to:

0,
min ( ) 0 0 0 1 vT

t TP Z t Z e (2.188)

Note that this probability of failure is described by an exponential distribution function. The
exponential distribution is by definition the distribution which describes failure probabilities for
processes with a constant failure rate (see e.g. Grimmett and Stirzaker, 1982). Figure 2.34
shows an example of an exponential distribution function. In this figure the failure rate, , is
taken equal to 1, which makes this a standard exponential distribution function.
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Figure 2.34 Standard exponential distribution function: F(T) = 1-exp(-T).

The probability that no failure occurs in an interval (0,T], given the fact that no failure occurs
at t=0, is equal to:

0,
min ( ) 0 0 0 vT

t TP Z t Z e (2.189)

The probability that no failure occurs in an interval [0,T] is then equal to:

F
min ( ) 0 1 00,

vT
tP Z t P eT (2.190)

In  which  PF(0) is the initial probability of failure (see below for more information on this
probability), i.e the probability that Z<0 at t=0. The probability, PF,  that  failure  occurs  in  an
interval [0,T] is equal to:

F
min ( ) 0 1  1 00,

vT
F tP T P Z t P eT (2.191)
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If the outcrossing rate, , and the initial failure probability, PF(0), are small, the probability of
failure can be approximated by:

F 0FP T P T (2.192)

This is an upper bound of the failure probability. In essence, this approximation “double
counts” the probability of events in which two or more failures occur in the interval [0,T]. If
and PF(0) are small, the probability of two or more failures occurring in the interval [0,T] is
negligible and therefore equation (2.192) is a good approximation in that case.

In the equations above, failure rate  was assumed to be constant. If this is not the case,
equation (2.191) changes into the following, more general, equation:

F
0

1 1 0 exp
T

FP T P v t dt (2.193)

The equations above can also be used if Z is a function of space. In that case, t and T need
to be replaced by x and X, where x represents distance, e.g. the longitudinal distance along a
dike section.

In Hydra-Ring, the outcrossing method is applied in time as well as in space. First, the
probabilities of failure of the smallest “components” are computed with the probabilistic
techniques for single components as described in section 2.3. The smallest component
considered in Hydra-Ring is a cross section of a flood defense (space) during a tidal period
(time). So, the initial result of the probabilistic procedure is the probability that failure occurs at
a certain cross section within the time-span of a tidal period. This result will be used as PF(0)
in the equations above, i.e. the initial failure probability. Subsequently the outcrossing
approach is applied for upscaling the probability of failure from a cross-section to a dike
section and from a tidal period to a year.

The failure rate (t) or (x) needs to be derived from spatial and temporal autocorrelations of
the strength and load variables. This will be described in more detail in sections 2.5.2 and
2.5.5. In general, functions (t) and (x) are too complex to solve equation (2.193)
analytically, which means approximating techniques are required. Hydra-Ring uses different
outcrossing approaches for space and time because of mutual differences in autocorrelation
structures.

Note that the component for which PF(0) is computed in Hydra-Ring has a “width” equal to 0
in space (a cross section) whereas the “width” in time is not equal to zero (a tidal period). This
has to do with the fact that the input statistics of random load variables like sea water level,
river discharge or wind speed represent probabilities of the maximum value in a tidal period
(see also section 3.3.3). These values are therefore suitable to represent the whole tidal
period. Correlation in space is mainly determined by strength variables and statistics of
strength variables do generally not refer to a maximum value over a considerable length. On
the other hand, a dike breach also has a certain width, i.e. does not occur only on a
theoretical cross section with zero width. Therefore, in practice often a certain width is
awarded to a cross section and the initial failure probability, PF(0) is awarded to this width.
This means a (slight) reduction in the length of the remainder of the dike section and hence a
(slight) reduction in the computed failure probability.
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2.5 Combining failure probabilities of components – choices and implementations in
Hydra-Ring

2.5.1 General overview
Hydra-Ring computes the failure probability of a flood defence system, which is composed of
a (large) number of components. Section 2.3 described techniques for computing failure
probabilities for single components and section 2.4 described generic techniques for
combining probabilities of single components to derive the failure probability of a system. The
current section describes the methods for system analysis that are implemented in Hydra-
Ring. The system analysis for failure probabilities in Hydra-Ring involves:

 Starting point: failure probability for a single mechanism and cross-section;
 Combining different closure scenarios of tidal barriers;
 Integrating in space from a cross-section to a flood defence segment;
 Combining different wind directions;
 Integrating in time from small time periods (<1 day) to a year;
 Combining different failure mechanisms;
 Combining different flood defence segments;

Note that the combining methods are also applied on random variables like wind direction and
closure scenarios. In that sense, these random variables are treated fundamentally different
from other random variables like wind speed and river discharge. The latter group is dealt
with in the probability computation for a single component (see section 2.3). The reason why
the wind direction is treated differently is because it is a “cyclic variable”. In section 2.2.3 it
was already mentioned that cyclic variables can not be represented in a meaningful way by
standard normal u-variables. This is because potential outcomes of these variables are not
“ordered” from small to large. The domain for these variables is 0-360 degrees, but 360
degrees is not “larger” than 0 degree. For this reason, the wind direction cannot be included
in the probabilistic computation for a single component. Instead, potential outcomes of the
wind direction are clustered in sectors, e.g. 16 sectors of 22.5 degrees. For each sector, a
probabilistic computation of a single component is executed. The resulting probabilities for the
16 sectors are combined with a special version of the Hohenbichler method. Section 2.5.3
describes the implemented method in Hydra-Ring for combining wind directions.

For the same reason, the random variable that represents the “functioning of the storm surge
barrier” (which can fail to function with a certain probability) is also treated similar to the wind
directions. This means that each potential state of the surge barrier is treated as a “single
component” and the failure probabilities of the different states are subsequently combined.
This procedure is described in section 2.5.4.

2.5.2 Temporal upscaling

2.5.2.1 Introduction
Failure probabilities in Hydra-Ring are first computed for relatively small time scales (<1 day)
in which the temporal variation of the relevant hydraulic variables (water level, wind etc) is
small enough to be assumed constant. This time scale will be referred to as the basic time
scale. In Hydra-Ring this time scale is typically set equal to a tidal period (12 hours and 25
minutes) but this can be varied by a user.

Output failure probabilities are generally expressed per year, which means the failure
probabilities of the basic time scale need to be scaled up into an annual failure probability. In
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Hydra-Ring, the strength/resistence of the flood defence system is assumed to be time-
invariant. This means temporal variation is only present in the hydraulic load variables. In the
hydraulic load model, two groups of variables are distinguished:

1 Fast evolving random variables;
2 Slowly evolving random variables.

For the first group, sampled values for successive basic time steps are assumed to be
independent, whereas for the second group there is significant dependence. The first group
consists of variables like wind speed and sea water level, the second group consists of
variables like river discharges and lake water levels.

For the slowly evolving variables a characteristic time scale needs to be defined. The time
scale of a load variable is the time at which autocorrelation of the load variable reaches zero.
For example, for a discharge hydrograph, the time scale may be on the order of several
weeks. Each discharge hydrograph is assumed to be independent from the hydrograph that
preceded it (no correlation). The number of time scales in a computation will depend on the
number of unique time scales of the load variables. However, in Hydra-Ring there is currently
only the option to take into account one time scale for slowly-evolving variables. This means
this one time scale has to be applied on all load variables for which autocorrelation in time
needs to be taken into account. Multiple time scales may be used for the fast evolving
variables, i.e. the variables for which autocorrelation in time can be ignored. The time scale
for the slowly evolving variable will always be the largest time scale.

Within the probabilistic model, care must be taken how the smaller scale variables and more
slowly-evolving variables are combined. For this purpose, three methods have been
implemented in Hydra-Ring: FBC, NTI, and APT. FBC stands for Ferry Borges & Castanheta
model, NTI stands for numerical time integration, and APT stands for arbitrary point in time.
How the slow load variable is handled in the probabilistic analysis has an impact on the
computation structure, which will be described in Appendix B. The sections below describe
the mathematical background of the three methods.

2.5.2.2 Method 1: Numerical time integration (NTI)
NTI stands for numerical time integration and refers to a method in which the failure
probabilities are combined over the smaller time period  within the time scale Tm of  the
slowly evolving load variable. Since the slowly evolving variables are typically river discharge
or lake level, the temporal evolution within the time scale Tm can be thought of as a
hydrograph with a rising limb and faling limb. In Hydra-Ring these are schematized by a
trapezium, as shown in Figure 2.35. The trapezium has a total duration Tm and is divided into
T components of length , with T = Tm/ . The duration of the peak value is defined as Tp.
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0 Tm

Tp

Qp

Figure 2.35  Example of a trapezium model used for modeling slowly-evolving load variables; the finer discretization
represents a smaller time scale of additional load variable(s)

In NTI, the failure probabilities are determined separately for each period of length , and
subsequently the probabilities are combined to derive the probability of failure for the entire
period of length Tm. Each period of length  can be considered as a separate component of a
series system, i.e. the system fails if at least one of the components fails. The probability of
failure for the entire period of length Tm can thus be described as:

1

0 0
T

Tm j
j

P Z P Z (2.194)

Where Zj is  the  Z-function  of  the  jth period of length . To determine this failure probability,
consider the trapezium of Figure 2.35, which is characterized by:

 a base duration Tm;
 a peak duration Tp; and
 a peak value Qp.

The first two, Tm and Tp are constants that are defined by the person who implements the
load model. The third, Qp, is a random variable with a user-defined distribution function. In
order to make a clear distinction between random variable Qp and constants Tm and Tp, the
hydrograph is described as the product of Qp and a dimensionless hydrograph:

pQ t q t Q (2.195)

In which
Q(t) = hydrograph of the slowly evolving variable;
q(t) = dimensionless hydrograph of the slowly evolving variable;
Qp = the peak of the hydrograph of the slowly evolving variable.

Function q(t) is dimesionless and has a peak value of 1. In case of a trapezium, q(t), is fully
determined by the choice of the user-defined parameters Tm and  Tp and is therefore
deterministic. Each period of time scale  is small enough to assume Q and q to be constant
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within the interval. For each component j, j=1..T, the value of function q(t) is taken equal to
the centre value in the interval:

0.5 ; 1..j
jq q j T

T
(2.196)

The probability of failure within time scale Tm can be written as follows (according to the
theory of total probability):

1

0 0 | 0 |
T

Tm Tm p p j p p
j

P Z P Z Q dQ P Z Q dQ (2.197)

The temporal evolution of the fast evolving load variables is such that the resulting values of
these variables in subsequent time steps can be assumed independent. This means that in
the simple case where the strength parameters can be considered as known constants, the
conditional probabilities of equation (2.197) are mutually independent. This simplifies the
probability of failure for the period Tm to:

1

0 | 1 1 0 |
T

Tm p j p
j

P Z Q P Z Q (2.198)

In general, however, strength parameters cannot be considered as known constants, which
means the uncertanties in these parameters need to be taken into account. The
autocorrelation of these strength parameters is approximately equal to one, even for large
time scales. Consequently, equation (2.197) is not valid anymore and a different approach is
required. For this reason, Hydra-Ring applies the Hohenbichler method of section 2.4.2 to
solve equation (2.194). First the failure probabilities of the individual components (the smaller
time scales) are quantified. In this step, the peak value of the trapezium, Qp,  is treated as a
random variable. So Hydra-Ring does not determine P(Zj<0|Qp), but directly P(Zj<0). The
advantage of this approach is that Qp can be treated as one of the parameters in a FORM
computation, instead of having it evaluated through numerical integration. This can save
significant computation time. So, for each component j the probability that failure occurs is
determined, taking all potential values of the peak, Qp, into account. P(Zj<0) is therefore
determined as follows (applying the theorem of total probability on QP):

0 0 | 0 |j j p p j j p pP Z P Z Q dQ P Z Q q Q dQ (2.199)

Note that:

 qj is a known constant for each j (see equation (2.196))
 P(Zj<0) is different for different intervals, because qj is different for different intervals. The

failure probabilities for components around the peak value are higher than failure
probabilities for components near the beginning or end of the standardized hydrograph.

The conditional probabilities of equation (2.199) are computed for each component separately
with the probabilistic computation techniques of section 2.3. The probability of failure for the
entire period Tm is then determined by combining the components with the Hohenbichler
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method of section 2.4.2. The Hohenbichler method requires correlations between the Z-
functions of the components. According to equation (2.119) these correlations are based on
[a] autocorrelations of the random variables and [b] -values of the random variables. The -
values are detemined when deriving P[Zj<0] for j=1..T. The autocorrelations are taken as
follows:

 Resistance variables: autocorrelation=1;
 Slowly evolving load variables: autocorrelation=1;
 Fast evolving load variables: autocorrelation=0.

Notes:

 Because the combining techniques of section 2.4 use the assumption of linear Z-functions
there will be differences in the results compared to the “exact” formulation as described in
equation (2.197).

 Naturally, the assumptions on autocorrelations are simplifications. The main assumption
is the assumption that the autocorrelations of the fast evolving variables is equal to 0
between two successive periods of time scale . This is an assumption that is also done
in other probabilistic models in the Netherlands like Hydra-B or Hydra-Zoet. In Hydra-
Ring, this assumption on the autocorrelation can be easily changed if a positive
autocorrelation is believed to be more realistic.

 In this chapter it is assummed that all resistance variables are constant in time. In some
failure mechanismes this is not the case for all stochastic variables. An example of this is
the seapage ditch water level, which play a role in the piping mechanism.

Subsequently, the failure probabilities for the hydrographs need to be upscaled to a year:

,
1

0 0
TN

year Tm j
j

P Z P Z (2.200)

In which Zyear is the Z-function for the period of one year and ZTm,j is the Z-function of the jth

hydrograph within a year and NT is the number of hydrographs in a year. In this computation
the autocorrelation of all load variables is taken equal to 0. However, the autocorrelation of
strength parameters is still higher than zero, which means the Z-functions of the hydrographs
are not independent. Therefore, equation (2.200) is solved with the Hohenbichler method
(section 2.4.2). If the autocorrelation between subsequent hydrographs blocks is large, the
combining method for equal components (section 2.4.3) can also be used.

2.5.2.3 Method 2: FBC
The FBC model, named for J. Ferry Borges and M. Castanheta (Ferry Borges & Castanheta
1971), assumes a rectangular shape for the evolution of the slowly-evolving load variable,
referred to in this context as a block. Figure 2.36 illustrates the concept.
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Figure 2.36 Illustration of the FBC model used for modeling slowly-evolving load variables; the finer discretization
represents a smaller time scale

Within a block, the represented (slowly varying) load variable is assumed to be fully
correlated and between blocks there is constant correlation (in Hydra-Ring often assumed to
be zero). For simplicity, the reader can assume a situation in which there are only two
relevant time scales:  (fast evolving variables) and Tb (block duration of slowly evolving
variables). The block duration Tb is typically somewhere between Tp and Tm as defined in the
previous section.

The block duration does not represent the duration of the evolution of the variable (e.g. a
complete discharge hydrograph), but rather represents the duration that the peak value of the
block is exceeded on average per exceedance. The duration of a block is derived from a
duration curve, N(q):

N(q) = average duration of a single exceedance of level q.

The duration curve is an input function for Hydra-Ring. The method to derive the duration is
an iterative procedure. First an initial estimate is done. For this initial estimate, the FORM
routine is executed and an initial estimate of the failure probability is derived. Furthermore,
the  value  of  Q  in  the  design  point  is  known:  Q=qd.  The  value  of  N(qd) is then used as the
estimate of the duration in the second iteration step. The iteration procedure continous until
the difference in durations of subsequent iteration steps is sufficiently small. Generally, this
procedure converges fast, i.e. only a few iteration steps are required.

The description of supported duration curves and an explanation how such a curve is derived
can be found in the statistical chapter, section 3.3. In the FBC method, the probability of
failure is first determined for the time period  (i.e. the time scale of the fast evolving
variables) using the standard probabilistic techniques as described in section 2.3.
Subsequently this probability is scaled-up to one year in two steps:
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1 Upscaling from time period  (time scale of the fast evolving variables) to the FBC block
duration;

2 Upscaling from the FBC block duration to a year.

In step 1 the following probability is computed:

1

0 0
bN

Tb j
j

P Z P Z (2.201)

Where Nb is the number of smaller time steps in a block duation (Nb=Tb/ ) and Zj, j=1..Nb is
the Z-function of the Nb time steps. Equation (2.201) is solved with the upscaling method of
section 2.4.3, i.e. the combining method for equal components. This method requires
correlations between the Z-functions of the individual components, i.e. the time steps of
length . According to equation (2.139) these correlations are based on [a] autocorrelations of
the random variables and [b] -values of the random variables. The -values are detemined
when deriving the probability of failure of the individual components, P[Z j<0] for j=1.. Nb. The
autocorrelations are taken as follows (similar to the NTI method):

 Resistance variables: autocorrelation=1;
 Slowly-evolving load variables: autocorrelation=1;
 Fast evolving load variables: autocorrelation=0.

In step 2, the following probability is computed:

,
1

0 0
yN

year TB j
j

P Z P Z (2.202)

In which Zyear is the Z-function for the period of one year and ZTB,j is the Z-function of the jth

block within a year. In this computation the autocorrelation of all load variables is taken equal
to 0. However, the autocorrelation of strength parameters is still higher than zero, which
means subsequent Z-functions are not independent. Therefore, the upscaling in step 2 is
done with the combining method for equal components (section 2.4.3).

The FBC method is computationally faster than NTI. Naturally, the representation of time-
variation of variables in “blocks” is an approximation, but so is a representation with
trapeziums or any other standardized shape.

2.5.2.4 Method 3: Arbitrary point in time (APT)
APT stands for arbitrary point in time, and refers to the stochastic handling of the timing within
the standardized hydrograph of the slowly evolving load variable. Just as with NTI, a
trapezium-shaped hydrograph is assumed for the slowly evolving load variable (see Figure
2.35) and this hydrograph is divided into T smaller time periods of length .

Function q(t) describes the dimensionless hydrograph (see section 2.5.2.2 on NTI) which is
defined on the interval [0,Tm], where Tm is the time scale of the slowly evolving random
variable. Consider a random variable c, that is equal to the value of function q at an arbitrary
moment, tc, in the interval [0,Tm]:
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cc q t (2.203)

Arbitrary means that tc is taken from a uniform distribution function over [0,Tm]:

~ (0, )c mt U T (2.204)

Then:

( )cP C c P q t c (2.205)

Figure 2.37 shows the cumulative distribution function, FC(c), of c in case the standardized
hydrograph, q(t), is a trapezium. To explain this figure, define Tp as the duration that the
trapezium is at its peak value. Then, the probability that at an arbitray moment, tc, in the
interval [0,Tm], the function q(tc) is equal to its peak value (q=1) is:

1 1 p

m

T
P P C

T
, (2.206)

So the probability that q(tc) is less than 1 is:

11 1 1 p m p

m m

T T T
P C P

T T
, (2.207)

Since the rising and falling limb of the trapezium are linear, the probability 1-P1 is uniformly
spread over the interval [0,1), in formula:

( | 1) m p
C

m

T T
f C C

T
, (2.208)

This results in the probability distribution function as displayed in Figure 2.37 and described
as:
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(2.209)
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Figure 2.37 – Schematic of the cumulative distribution function of c

To sample variable c, first a random number, v, from the uniform distribution is sampled, after
which the value of c is computed as:

min , 1m

m p

Tc v
T T

, (2.210)

According to equation (2.195), the value of the slow-evolving variable Q at an arbitrary
moment, tc, is the product of the peak discharge Qp and the value of the standardized
hydrograph, c=q(tc). In other words: Q can now be described as the product of two random
variables, Qp and c. According to the theorem of total probability, the probability that failure
occurs at an arbitrary moment, tc, can be written as follows:

0 0 | ,tc tc p C Qp p pP Z P Z c Q f c f Q dcdQ (2.211)

The conditional probability of failure P(Ztc<0|c,Qp) can be computed with the probabilistic
computation techniques of section 2.3. Equation (2.211) could be solved with numerical
integration over variable c, which in essence is the NTI method. However, in the APT-
procedure, the random variable c is directly included in the evaluation of P(Ztc<0). This means
that if the FORM-method is applied to solve P(Ztc<0), variable c is an additional variable in the
FORM-procedure. Since FORM is generally much faster than numerical integration, this
saves valuable computation time in comparison with the NTI procedure.

The resulting value of P[Ztc<0] is the probability that failure occurs in the smallest time scale
of the model, i.e. the time scale of the fast evolving variables. This probability is scaled-up to
one year in two steps:

1 Upscaling from time period  (time scale of the fast evolving variables) to the time period
Tm time scale of the slowly-evolving variables).

2 Upscaling from Tm to a year.
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In step 1 the upscaling method of section 2.4.3 is used, i.e. the combining method for equal
components. This is because each component at time scale  is treated as an arbitrary
moment in time, which means each component is essentially the same. This is the essential
difference with the NTI method, where each component is associated with a specific moment
in the hydrograph, which means each component has a different probability of failure. The
upscaling method requires correlations between the Z-functions of the individual components,
i.e. the time steps of length . For this purpose, the following assumptions are made on the
autocorrelations of the individual random variables (similar to NTI and FBC):

 Resistance variables: autocorrelation=1;
 Slowly-evolving load variables: autocorrelation=1;
 APT-variable c: autocorrelation=0;
 Fast evolving load variables: autocorrelation=0.

Upscaling to a period of one year (step 2) is done in the same way as the NTI-method.

Required adaptations to APT
In areas where the slowly-evolving variables are dominant, the APT method is known to have
some practical problems that may lead to significant errors. Such areas are for instance river
stretches with hardly or no tidal influence. In that case the river discharge, which is the slowly
evolving variable, is the dominant factor. The problems are explained below and also the
solutions are described.

Problem 1
In case of a dominant slowly evolving variable, c becomes a dominant random variable and
its value may be close to 1, which is the upper limit of variable c. If the dimensionless
hydrograph, q(t), is a trapezium this means c is in the area where the distribution function
FC(c) makes a “jump” (see Figure 2.37). This is a discontinuity and this may cause the
probabilistic method FORM (see section 2.3.6) not to converge, because the partial derivative
of variable c in equation (2.49) varies strongly around the discontinuity.

This problem can be solved by splitting the trapezium in two components: the part where the
trapezium is at its peak and the combined rising and falling limb. The probability of failure for
the whole trapezium then becomes:

lim0 0 0trapezoid peak bP Z P Z Z (2.212)

The first part, Zpeak, can be modeled by an FBC block, as described in the previous section. In
the second part, Zlimb, variable c has a unifom distribution. This mean FC(c) has no
discontinuities and the APT method can be applied. Subsequently, the two Z-functions are
combined with the Hohenbichler method.

Problem 2
Consider the APT model for Zlimb. Variable c now has a uniform distribution:

;0 1

1 ;0 1
C

C

F c c c

f c c
(2.213)

Suppose the slowly evolving variable Q is the only random variable involved:
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Z R AQ (2.214)

In this Z-function, R and A are constants. In the APT method, Q is represented by two
random variables: c and Qp. Application of the FORM procedure to derive the failure
probability for the small time period  will result in -values for c and Qp and a reliability index,
. The Z-function can then be written as:

1 1 2 2Z u u (2.215)

Where u1 represents c and u2 represents Qp. The next step is to upscale the Z-function to the
period of time scale Tm. For this purpose, the method of section 2.4.3 is used, i.e. the
combining method for equal components. In the upscaling process, u1 is a standard normally
distributed variable. This means u1 does not have an upper limit, even though it represents
variable c which does have an upper limit (i.e. 1). The larger values of u1 will therefore
unrightfully contribute to the failure probability in the upscaling process. This will lead to an
overestimation of the failure probability, especially if the value of c in the design point is close
to 1. Application of the APT method on a number of academic tests revealed that this
overestimation indeed occurs.

The APT method therefore needs to be corrected in such a way that this overestimation is
ruled out. In Vrouwenvelder et al [2011] a practical solution was found for this. Application of
the adapted method on a number of academic test problems showed that the problems where
resolved, i.e. failure probabilities where not overestimated anymore.

Ergens In 2013 gaat nog verder onderzoek gedaan worden naar de oplosmethode. Zodra dat
beschikbaar is, worden de relevante tekstdelen overgenomen in het onderhavige document
en waar nodig aangepast ten behoeve van het beoogde lezerspubliek.

2.5.3 Combining over wind directions

2.5.3.1 Straightforward approach; not used in Hydra-Ring
Wind directions can take on any value between 0 and 360 degrees. For practical purposes,
the interval [0,360] is divided into a number of sectors 1… Ns, e.g. 12 sectors of 30 degrees
or 16 sectors of 22.5 degrees. Statistical characteristics for all wind directions within a single
sector are then assumed to be the same, whereas statistics between different sectors will
vary. The combined sectors cover all potential outcomes of the wind direction (0-360
degrees), which means the probability of failure of a flood defence can be written as:

1

0 0
SN

i i
i

P Z P Z (2.216)

Where Zi is the Z-function for sector i, i=1..Ns and  is the wind direction. Wind sectors are
generally made disjunct, which means equation (2.216) can be written as:

1

0 0
N

i i
i

s
P Z P Z (2.217)
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Taking into account that P(A B) = P(A|B)P(B), equation (2.217) can be further rewritten as:

1

0 0 |
N

i i i
i

s
P Z P Z P (2.218)

According to this equation, the probability of failure can be derived given the wind direction,
and subsequently the different contriutions of the wind directions are accumulated. The
advantage of this approach is that wind directions are treated separately, taking into account
differences in statistics of variables like wind speed and sea water level that depend on the
wind direction. Equation (2.218) in essence is the approach where the wind direction is taken
into account through numerical integration.

2.5.3.2 Method as programmed in Hydra-Ring
Even though the method as described in the previous section is straightforward and easy to
comprehend, it is not applied in Hydra-Ring. The reason for this is that the method does not
provide an -value for the wind direction and this -value is required for subsequent
combining of failure mechanisms and dike segments (see section 2.5.6). Therefore an
alternative method is applied that is largely based on the method of Hohenbichler (section
2.4.2).

Consider equation (2.218). The probability per wind direction that needs to be derived is:

0 0 |i i i i iP Z P Z P (2.219)

Now define function Zi’ as follows:

1'i i iZ u P (2.220)

Where ui is a standard normally distributed variable and  is the standard normal distribution
function. It is easy to verify that:

' 0i iP Z P (2.221)

So Zi’ is a Z-function that represents the probability of occurrence of wind direction i. This
means equation (2.219) can be rewritten as:

0 0 ' 0 0 | ' 0 ' 0i i i i i i iP Z P Z Z P Z Z P Z (2.222)

In order to combine these two probabilities, first the correlation coefficient, , between Zi and
Zi’ needs to be established. The following formula is used to derive :

2

1
, '

n

i i k k
k

Z Z (2.223)

Where k is the autocorrelation of variable k and k is the -value of variable k as derived in
the determination of P[Z<0]. The following is assumed for the autocorrelation:
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• Resistance parameters: =1;
• Slowly evolving variables: =1;
• Fast evolving variables: =0.

In other words: only for the load variables that fluctuate as fast as the wind direction the
autocorrelation is assumed to be equal to 0. This assumption is the same as was done in
section 2.5.2 for the temporal upscaling methods NTI, FBC and APT. Naturally, the
assumptions on autocorrelations are simplifications. The main assumption is that the
autocorrelations of the fast evolving variables is equal to 0 between two successive periods of
time scale . This is an assumption that is also done in other probabilistic models in the
Netherlands like Hydra-B, Hydra-Zoet. In Hydra-Ring, this assumption on the autocorrelation
can be easily changed if a positive autocorrelation is believed to be more realistic.

Function Zi can be rewritten as follows

, , , , ; 1..i c i c i u i u i sZ u u i N (2.224)

In this description, uc,i represents the u-values of the variables that are fully correlated in time,
whereas uu,I represents the u-values of the variables that are fully uncorrelated in time. Note
that:

22 2
, , ,; 1 1

n

c i ik k u i c i
k

(2.225)

Naturally, the sum of the squares of c.i and u,I is equal to 1. The method that is applied in
Hydra-Ring takes into account the fact that after combining Zi with Zi’, the u-value of the the
correlated part, uc does not change. This can be explained with the simple example of a Z-
function with only one variable, U, that is fully correlated to the wind direction:

Z u u (2.226)

The reliability index of this function is equal to =u, which is also the value of u in the design
point. Now after combing with Z’, the failure probability, P[Z<0], remains the same because Z
is fully correlated to the wind direction. This means the reliability index, , remains the same
and hence the value of u. This shows that the value in the design point does not change for
variables that are fully correlated to the wind direction.

If U is fully uncorrelated to the wind direction, the combination of Zi and Zi’ can be done by
simple multiplication:

0 ' 0 0 ' 0i iP Z Z P Z P Z (2.227)

This means a decrease in failure probability and hence an increase in . The new  can be
computed as follows:

1 0 ' 0new iP Z P Z (2.228)
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The increase in  is then of course equal to:

new (2.229)

The examples above show cases where U (and hence Z) is either fully correlated or fully
uncorrelated to the wind direction. In reality, Z can also be partially correlated to the wind
direction, see the example of equation (2.224). In that cases, the U-value of the correlated
part in the design point remains unchanged, whereas the change in  for the uncorrelated
part is computed according to equation (2.229). In order to compute the change in beta for
the complete Z-function, the value of  needs to be multiplied by the -value of the
uncorrelated part (since only the uncorrelated part causes a change in the reliability index):

2
, 1u i (2.230)

This value of  is added to the  of function Zi. This is the way in which the influence of the
probability of the wind direction is taken into account. This method is schematized in Figure
2.38.

ucorrelated

u un
co

rr
el

at
ed

original design point
new design point

Figure 2.38 Schematised view of computing the new design point and new beta as a result of including the
probability of occurrence of the wind direction.

The result of the method for combining Zi and  Zi’ is a set of  and -values  for  all  wind
directions:
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1 1 ... ; 1..e e e e
i i i i in in sZ u u i N (2.231)

The superscript “e” refers to the fact that the Z,  and  are equivalent values/functions,
derived by combining two components. The probability of failure for all wind directions
combined is then equal to:

1

0 0
SN

e
i

i

P Z P Z (2.232)

Note that the probability of occurence of each wind direction, P( = i), is not explicitely
mentioned in equation (2.232) because it is already incorporated in Z i

e. Equation (2.232) is
solved with the Hohenbichler method. To apply this method, the correlations between the Z-
functions are required. The correlation between two functions Zi

e and Zj
e is derived as follows:

1

,
n

e e e e
i j ik jk ijk

k

Z Z (2.233)

Where e
ik is the equivalent -value of the kth variable in the ith wind sector and ijk is  the

(auto-)correlation between the kth variable in the wind sector i and the kth variable in the wind
sector j. For the individual variables, autocorrelation coefficient ijk is  chosen  the  same  as
before, i.e. equal to 1 for resistance variables and slowly evolving load variables and equal to
0 for fast evolving load variables.

To illustrate the whole procedure, consider the extreme case where the Z-function only
depends on fast evolving variables. In that case the -values of equations (2.223) and (2.233)
are all equal to 0. Functions Zi and Zi’ are modelled as a series system in equation (2.222), so
a value of =0 means P(Zi<0) and P(Zi’<0) are multiplied:

0 ' 0 0 ' 0 ; , ' 0i i i i i iP Z Z P Z P Z Z Z (2.234)

Note  that  P(Zi’<0) represents the probability of occurence of a wind direction, P( = i).
Subsequently the wind directions are combined. Wind directions are modeled as a parallel
system in equation (2.233), so a value of =0 means the failure probabilities of the individual
wind directions are accumulated:

1

0 0 ; , 0,
sN

i i j
i

P Z P Z Z Z i j (2.235)

So if the Z-function only depends on fast evolving variables, the procedure comes down to
the numerical integration procedure as described in equation (2.218), which is the exact
solution. So for the case where the Z-function only depends on fast evolving variables, the
method as described in the current section provides the correct answer. Note that for each
wind direction the failure probability is multiplied by P( = i), which means a reduction of the
failure probability (i.e. an increase in ). Subsequently, the probabilities of the wind directions
are accumulated, which leads to an increase in the failure probability (i.e. a decrease in ).

Now consider the other extreme case where the Z-function only depends on slowly evolving
variables:
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1 1 ... n nZ R a X a X (2.236)

Where  R  is  the  resistance  and  X1… Xn are slowly evolving variables. The Z-function is the
same for each wind direction, because the slowly evolving random variables like river
discharge are independent of the wind direction. Furthermore, the -values of equations
(2.223) and (2.233) are all equal to 1. A value of =1 means the combination of P(Zi<0
Zi’<0) in equation (2.222) will be equal to P(Zi<0):

0 ' 0 0 ; , ' 1i i i i iP Z Z P Z Z Z (2.237)

In other words: the probability of failure given the wind direction is the same as the probability
of failure AND the occurrence of the wind direction. Subsequently, the wind directions are
combined. A value of =1 means the failure probability of the combined wind directions is
equal to the failure probability of the wind direction with the largest probability of failure:

max0 0 ; , 1,i i jP Z P Z Z Z i ji (2.238)

Function Zi is the same for each wind direction, see equation (2.236). This means that after
executing the procedure, the original Z-function of equation (2.236) is derived. This shows the
procedure provides the correct answer in case the Z-function only depends on slowly evolving
random variables.

The examples above show that for the two “extreme” cases, the procedure will result in the
correct failure probability. If the Z-function only depends on fast evolving variables, the
procedure comes down to the numerical integration approach as described in (2.218). If the
Z-function only depends on slowly evolving variables, the procedure results in a single Z-
function that is the same as the original Z-function (equation (2.236)). If the Z-function
depends on both slowly and fast evolving variables, these two groups are essentially split up
and the above descrbed procedures are executed.

2.5.3.3 Deriving the alpha value for the wind direction
As stated earlier, the main advantage of the approach as described in section 2.5.3.2 over the
method as described in section 2.5.3.1 is that it enables the derivation of -values of the wind
direction. First of all, a design point value for the wind direction needs to be selected. This is
the wind direction ( ), with the highest probability of failure, i.e. the lowest reliability index.
Define  as the weighted reliability index given the wind direction that was derived for the
selected wind direction . Furthermore, define com as the reliability index that is derived after
combining all the wind directions. The -value of the selected wind direction, , is derived
from the following equation:

2
21 1com

com

, (2.239)

This can be explained as follows. Consider a standard description of a normalized linear Z-
function:
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1 1 ... n nZ u ub a a= + + + (2.240)

As we know from section 2.2.5, this Z-function has a reliability index equal to . The design
point value of each variable ui is equal to: ud,i = - i . Now consider an alternative Z-function,
Z’, in which variable u1 is taken equal to its value in the design point:

( )
( )

2

1 ,1 2 2

1 1 2 2

1 2 2

' ...

...
...

d n n

n n

n n

Z u u u

u u
u u

b a a a
b a a b a a
b a b a a

+

= +

= +

= + + +
+ - + +
- + +

(2.241)

The -values in equation (2.241) are taken the same as in equation (2.240). Equation (2.241)
is not a normalized Z-function. This is because u1 is no random variable anymore, so the
function Z’ has 2,…, n left as the -values. Since Z is a normalized function, we know that:

2 2 2
1

1 2

1 1
n n

i i
i i

a a a
= =

= Þ = -å å (2.242)

This means that equation (2.241) can be normalized by division by 1- 1
2.  This results in a

new Z-function Z’’:
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In which:
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= (2.244)

Z’’ is a normalized Z-function with reliability index, ’’ equal to:

2
2

12
1

1 1
1
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b a b
b b= -

-

-
= (2.245)

So, if we set the first u-variable of the Z-function of equation (2.240) equal to its design point
value, reliability index  reduces to reliability index ’’ as described in equation (2.245). The
similarity between equations (2.245) and (2.239) is evident. Reliability index  in equation
(2.239) is the reliability index that is obtained if the wind direction is set equal to its design
point value, whereas com is the reliability index if all potential outcomes of the wind direction
are taken into account. So if we replace ’’ and  in (2.245) by  and com we  obtain  the
relation as described in (2.239). This shows that equation (2.239) provides the -value of the
wind direction.
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the -values for the other random variables involved are taken equal to the -values that
were derived for wind direction , I.e. the wind direction with the highest failure probability.
Note, however, that these values need to be multiplied by the a factor ( / com)2 to take into
account the fact that the -value of the wind direction is included. This multiplication
guarantees that the sum of the aquares of the -values (including the -value of the wind
direction) is equal to 1.

2.5.4 Closure scenarios for flood barriers

2.5.4.1 Basic method description
Flood barriers close off a river or estuary system when high sea water levels are predicted,
with the objective to reduce high loads in tidal river systems. The ways in which these barriers
operate depend on their design and the conditions under which they should be activated. An
open or closed barrier can substantially affect the water level at flood defences (e.g. dikes)
protected by it. This automatically means that the probabilities of failure of the flood defences
behind the barrier are influenced by the operation of the barrier.

Closure scenarios are the different scenarios for the barrier that need to be taken into account
when deriving the probability of failure of a flood defence that is protected by the barrier.
These scenarios include, among others, the state of the barrier (open, closed, partially
closed, etc.) and the operation rules of the barrier. For example, consider a barrier that is
designed to close when the water level, hb, at a specified location is greater than some critical
water level, hb*, and assume (for the moment) that the barrier never fails to close upon
request. The contribution of this scenario to the probability of failure at a flood defence that is
protected by the barrier is equal to:

*failure flood defence with closed barrier failure flood defence b bP P h h (2.246)

To explain the method used in Hydra-Ring to solve equation (2.246), Figure 2.39 presents a
schematization of this scenario. This figure helps conceptualize the influence of a barrier on
the failure probability of a flood defence at some location along the river or estuary. In this
figure, the water level at the flood defence is assumed to be determined by the combination
of:

 Water level at sea (hsea)
 Upstream river discharge (Q)
 Closure situation of the barrier (open or closed).

Other influences like wind speed have been left out of Figure 2.39 for the sake of simplicity. In
each panel of Figure 2.39, three lines are displayed:

1 a limit state function, Zc(Q,hsea)=0 in case the barrier is closed
2 a limit state function, Zo(Q,hsea)=0 in case the barrier is open
3 the closure criterion: hb(Q,hsea)=hb*.

The first two lines are limit state functions that define for which combinations of Q and hsea
failure occurs at the considered dike location for the considered failure mechanism, in the
situation when the barrier is closed or open respectively. The failure domain is to the upper
right of these lines, which shows failure is more likely to occur in case the barrier is open.
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Figure 2.39 Schematic representation of the failure domain (of the flood defence) for the scenario of the closed
barrier.

The ‘closure criterion’ (third line) does not represent a critical level for failure (Z-function) like
the other two lines. However, for computational reasons it can be described as a Z-function:

*
b b bZ h h (2.247)

In which hb is a function of random variables such as Q and hsea. In some cases, the closure
of the barrier is slightly complicated by the fact that predictions of water levels are used to
determine whether the barrier should be closed. The predicted water level contains some
error , with a user defined distribution. To take this prediction error into account, the Z-
function for the barrier is described as:

*
b b bZ h h (2.248)

In which hb( ) is the water level as a function of the prediction error . Note that the three Z-
functions, Zo,  Zc and Zb, are presented in Figure 2.39 as straight lines. In reality they will be
non-linear of variables like discharge (Q) and sea water level (h). In equation (2.248), function
Zb is a linear function of hb (the local water level at the barrier) but hb is a non-linear function
of Q and h. Note further that the closure criterion line is the same for each dike location, while
the other two lines are location–specific.

In Figure 2.39, the grey area represents the failure domain that is associated with the
scenario of equation (2.246). The failure probability for this scenario can be described as
follows:

failure flood defence with closed barrier 0 0c bP P Z Z (2.249)

In a similar manner, the falure probability for the scenario of the open barrier can be
described:

failure flood defence with open barrier 0 0o bP P Z Z (2.250)

The failure domain for this scenario is displayed in Figure 2.40.
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Figure 2.40 Schematic representation of the failure domain for the scenario of the open barrier.

Failure at a dike location will either occur with open or closed barrier. The failure probability
for such a location is therefore a combination of equations (2.249) and (2.250):

0 0 0 0 0c b o bP Z P Z Z Z Z (2.251)

So in order to determine failure probabilities for locations that are protected by a barrier, three
Z-functions (Zo,  Zc and  Zb) are combined. The Z-functions are described by databases of
hydraulic model results in which the water level at each model output location is a function of
multiple input variables. In case of the tidal area in the Netherlands, these variables are river
discharge, sea water level, wind speed and wind direction. For this area, two databases are
available, representing the cases of open and closed barrier respectively. Function Zc is
based on the database for the closed barrier, functions Zo and Zb are based on the database
for the open barrier. The latter is explained by the fact that the moment at which the barrier
should be closed is determined in the situation in which the barrier is still open. For function
Zb, only the hydraulic model results for the location that determines the closure criterion are
relevant.

2.5.4.2 Potential failure of the barrier
In the previous section it was assumed that the barrier closes on each request. However, in
reality the barrier may fail to do so, e.g. due to mechanical or human errors. This can be
taken into account in Hydra-Ring. For a barrier with two closing situations (fully open or fully
closed), there are four possible scenarios, described as follows:

Table 2.6  Description of the four possible closure scenarios for a barrier with two closing situations (open or closed)

Scenario closure criterion situation closure situation Correctly open/closed
S1 hb hb* Closed yes
S2 hb hb* Open no
S3 hb < hb* Closed no
S4 hb < hb* Open yes

The probability of failure for a flood defence that is protected by the barrier can be decribed
as:

4

1

0 0 i
i

P Z P Z S (2.252)
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Figure 2.41 shows the failure domain for the four scenarios (grey areas). Each of the four
schematizations is explained as follows:

1 In scenario 1, the barrier is correctly closed: failure domain = Zc<0  Zb <0.
2 In scenario 2, the barrier is incorrectly open: failure domain = Zo<0  Zb <0.
3 In scenario 3, the barrier is incorrectly closed: failure domain = Zc<0  Zb 0.
4 In scenario 4, the barrier is correctly open: failure domain = Zo<0  Zb 0.

Substitution of these functions in equation (2.252) gives:

0 0 0 0
0

0 0 0 0
c b o b

c b o b

Z Z Z Z
P Z P

Z Z Z Z
(2.253)
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a) Failure domain, Scenario 1
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c) Failure domain, Scenario 3
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Figure 2.41  Schematic representation of the failure domain for the four closure scenarios

Consider the general failure probability formula for a single scenario (out of four scenarios).
From basic probability theory, the following is true by definition:

|P A B C P A B C P A B P C A B (2.254)

The definitions of A, B and C differ for the four scenarios, see Table 2.7

Table 2.7  Description of events A, B, and C for the four closure scenarios described in Table 2.6
scenario A B C
1 Zb<0 Zc<0 Barrier closed
2 Zb<0 Zo<0 Barrier open
3 Zb 0 Zc<0 Barrier closed
4 Zb 0 Zo<0 Barrier open

The probability of C is fully determined by the status of A, i.e. it is not influenced by the status
of B. This means equation (2.254) simplifies to:

|P A B C P A B P C A (2.255)

P(A B) is determined by combining the two related Z-functions, using e.g. the techniques as
described in section 2.4. P(C|A) is an input table in Hydra-Ring, containing information about
the probability of failure of the barrier per request for closure or opening (so no annual failure
probability!). These probabilities can be derived e.g. through a fault tree analysis. An example
of such an input table is presented in section 4.5.1.6.

2.5.4.3 Potential extensions of the method
The method as described in the previous section can also be applied on more complex
systems. For instance the closure criterion may be related to the water level at more than just
one location. This is for insdtance the case for the barrier in the Rhine/Meuse delta in the
Netherlands. This barrier will be closed if the (predicted) water level at either Rotterdam or
Dordrecht exceeds a critical level. This means a Z-function needs to be derived for each of
these two locations and subsequently these two Z-functions need to be combined. In more
general terms this can be formulated as follows:

1

LN

b bi
i

Z Z (2.256)
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In which Zb is the combined Z-function for the closure criterion and Zbi describes the closure
criterion of location i (out of NL locations).

Another potential extension is the option that a barrier may also ‘partially’ fail to close upon
request, e.g. it is only half closed. This would lead to an increase of potential states of the
barrier, additional to ‘open’ or ‘closed’. For each state a separate hydraulic database is
required that describes the local water level as a function of the random variables (discharge,
sea water level etc.). Consequently, for each barrier state, a Z-function can be defined. These
Z-functions need to be combined in a similar manner as described in the previous section to
derive the total failure probability.

A third potential extension is the fact that a river delta may contain more than just one barrier.
This would also lead to an increase in potential barrier states similar to the previous example.
Basically, each combination of states of the various barriers in the system can be considered
as one state of the entire barrier system. For each combination, a separate hydraulic
database is required that describes the local water level as a function of the random
variables, in order to formulate a Z-function for each combination. With multiple barriers and
multiple potential states for each barrier this may lead to a large amount of combinations of
barrier states and hence a large amount of required hydrodynamic model simulations.

2.5.4.4 Trouble-shooting
As stated before in previous sections, techniques using linearizations of Z-functions rely on
the fact that the error introduced by the linearisation is small. Unfortunately, this turned out
not to be the case for a practical case in the Netherlands. More specifically: the linearisation
of function Zb that represents the closure criterion (equation (2.248)) introduced an error in
the computation of the failure probability that is unacceptably large. This was (mainly) due to
the inclusion of the prediction error, , in function Zb. To solve this problem, this variable is
dealt with through numerical integration. In this approach the following integral, based on the
theorem of total probability, is solved:

0 0 |b bP Z P Z f d (2.257)

Note that for P(Zb 0) a similar approach can be used. In the numerical integration approach,
a numerical grid is defined to represent the domain of outcomes of . Assume for simplicity
that the grid is equidistant with step size . Then, the integral of equation (2.257) is
approximated by:

1

0 0 |
N

b b j j
j

P Z P Z f (2.258)

Where N is the number of grid cells. Now, define:

|j b jZ Z (2.259)

Then:



100 of 259 Hydra Ring Scientific Documentation

1206006-004-ZWS-0001, 2 January 2013, draft

1

0 0
N

b j j
j

P Z P Z f (2.260)

Substitution of equation (2.260) in equation (2.253) provides the failure probability for the 4
scenarios of Table 2.7 combined:

1

1

1

1

0 0

0 0
0

0 0

0 0

N

j c j
j

N

j o j
j

N

j c j
j

N

j o j
j

P Z Z f

P Z Z f
P Z P

P Z Z f

P Z Z f

(2.261)

The approach in Hydra-Ring is to derive a linearised version of each function Zj, j=1..N. For
this purpose a failure computation for a single component (see section 2.3) is executed N
times, each time for a different constant value of j. The result of this procedure consists of N
sets of  and -values, that are used subsequently to solve equation (2.261) with combining
techniques such as the Hohenbichler method of section 2.4.2. Note that the set of  and -
values for Zj<0 are the same as the set of  and -values for Zj 0, multiplied by -1.

2.5.4.5 Deriving the alpha value for the prediction error
Since prediction error  is dealt with through numerical integration, no -value is provided for
this variable at first. The -value of  therefore needs to be derived in similar fashion as for
the wind direction, see section 2.5.3.3. This means first of all that a design point value for
needs to be selected. This is the value of the prediction error, *, for which the failure
probability P(Zj<0 Zc<0) is highest. Define * as the associated reliability index and define

com as the reliability index that is derived after combining all values of  through numerical
integration. The -value of the prediction error, , is derived with the following equation:

2

1
com

(2.262)

The reader is referred to section 2.5.3.3 for an explanation of this equation. Similar to section
2.5.3.3, the -values for the other random variables involved are taken equal to the -values
that were derived for *, i.e. the prediction error with the highest failure probability. Note,
however, that these values need to be multiplied by the a factor ( */ com)2 to take into account
the fact that the -value of the prediction error is included. This multiplication guarantees that
the sum of the aquares of the -values (including the -value of the prediction errors) is equal
to 1.

An alternative method to derive the -value of  is to base it directly on the  prediction error,
*, for which the failure probability P(Zj<0 Zc<0) is highest. The corresponding u-value of *,

u*, is
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*
com

u
(2.263)

This method is applicable for the prediction error because the u-value of  has a real
meaning. For wind direction, this method can not be applied because wind direction is a
‘cyclic’ variable, which means the u-value has no meaning.

2.5.4.6 Pre-processing
Since Zb describes the behaviour of the tidal barrier, the linearisation of this function is the
same for each flood defence segment that is protected by the barrier. The procedure
therefore needs to be repeated each time a failure probability of a flood defence segment is
computed that is protected by the barrier. To reduce computation time, the linearization
process as described in section 2.5.4.4 is executed once as preprocessing and the resulting
sets of  and -values that describe the linearised Z-functions are stored in an input file for
Hydra-Ring. For this purpose a special pre-processing procedure is implemented. In this pre-
processing procedure, the required values for  and  are determined for Zb. This is done by
executing one of the computation techniques of section 2.3. In this procedure, the folowing
probability that Zb<0 is computed. The resulting values of  and  provide the required
description of the linearization of Zb. Note that in principle the same procedure needs to be
executed for Zb 0. However, the resulting -values and  for this case will be -1 times the -
values and  for  Zb<0. Therefore, the procedure will not be executed twice to save
computation time.

The procedure needs to be executed for each combination of:

 wind direction;
 grid value of , i.e. the water level prediction error (only in case of function Zbo);
 temporal upscaling method: FBC, APT and NTI;

With regard to the temporal upscaling methods, it is relevant to note that failure computations
with FBC in Hydra-Ring will be done with block durations (see section 2.5.2.3) that can be
different for different dike sections or mechanisms. To facilitate this, the preprocessing
procedure should also be executed for different block durations. Similarly, for application in
the NTI method, the preprocessing should be applied for each phase of the standardized
hydrograph (see section 2.5.2.2). However, these additional computations are left out of the
procedure as they will not influence the computed failure probability significantly. For FBC,
this means a representative block duration is selected whereas for NTI the computation is
executed for the peak of the standardized hydrograph.

2.5.5 Spatial upscaling - from cross section to flood defence segment

2.5.5.1 Computing the failure probability
The spatial upscaling technique as described in the current section is done over
homogeneous reaches of flood defense. Homogenous in this case means the statistical
characteristics remain constant. It is therefore relevant that the flood defence system is
divided into segments for which the assumption of homogeneity is valid. So, if a dike segment
is inhomogeneous, it needs to be split up into smaller, homogenous, segments. Note:
upscaling over different segments to derive the probability of failure of the entire flood
defence system is described in section 2.5.6.
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Spatial upscaling is subject to a concept known as the length effect. The length effect
essentially has to do with the increase in failure probability when going from a cross-section
to a longitudinal segment and from a single segment to a flood defense system
(interconnected segments). That is, the length effect refers to the effect that an increase in
length has on the probability of failure. Note that this effect is also present when upscaling
over time; the failure probability will increase as the considered time period increases.

The mathematical description of the length effect is the ratio of the failure probability of the
larger length to that of the shorter. For the upscaling from cross-section to longitudinal
segment (assuming statistical homogeneity!) this would be as follows:

Length effect = ,

,

f segment

f crossSection

P
P (2.264)

where Pf,segment refers to the failure probability of the longitudinal segment and P f,crossSection
refers to the failure probability of the cross section within that longitudinal segment. To derive
the ratio of equation (2.264), a notion of the spatial correlation within the segment is required,
for each random variable, X, involved. In Hydra-Ring this correlation is described with the
following model:

2

2(1 ) expx x
x

yy
d

(2.265)

Where  is the correlation between two locations within the segment, y is the distance
between these two locations, x is the residual correlation length of variable X and dx is the
spatial correlation length of variable X. Parameter dx determines how quickly the correlation of
variable X decreases over distance and x is the minimum correlation of variable X between
two locations of the same (homogeneous) segment. The parameters dx and x need to be
determined for each variable X, based on a combination of measurements and expert
judgement.

Figure 2.42 Autocorrelation function, correlation within a dike section

x
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The correlation model of equation (2.265) and Figure 2.42 in principle is applied for each
strength variable (load variables can generally be assumed to have correlation 1 within a
single segment). This results in a similar model for the Z-function, i.e. in values dZ and Z:

2

2(1 )expZ Z
Z

yy
d

(2.266)

The parameters dZ and Z can be derived as follows:

2

1

n

Z i i
i

(2.267)

2
2 2

1

1 1 1(1 )
1

n

i i
iZ Z id d

(2.268)

In which:

di = correlation lengt of random variable i
i = residual correlation length of random variable i
i = influence coefficient of random variable i

Note that:

1 Coefficients 1, …, n are determined in the probabilistic computation for a
“representative” cross-section within the flood defence segment. For this purpose the
probabilistic techniques for a single component are used (see section 2.3).

2 Function (2.266) is an approximation of the correlation function for Z.

To derive the probability of failure of a dike segment, the segment is divided into components
of equal length L. The number of components is equal to:

e
Ln
L

(2.269)

Where L is the length of the dike segment. The probability of failure for the entire dike
segment is then equal to:

, , sec , sec1 1F segment e F cross tion F cross tion
LP n P P
L

(2.270)

This means the continuous process, in which failure can occur at any location along the dike
is now replaced by a discrete process in which the dike segment is composed of a finite
number of components, each of which has a failure probability that is equal to the probability
of failure of a cross-section. This simplification/approximation is only valid for a well selected
value of L. If we assume that the spatial variation of Z is a Gaussian ergodic process (i.e.

Z=0), the length L should be taken equal to:
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/ ;if 0z ZL d (2.271)

Where  is the reliability index as derived in the probabilistic computation for a cross-section
(see section 2.3). The value of L is a result of the outcrossing approach (see section 2.4.5.3)
in which the spatial variation of Z is assumed to be a Gaussian ergodic process. The
derivation of L, as described in equation (2.271), is described in Jongejan [2012].

With the assumption of a Gaussian ergodic process, the failure probability of a dike segment
of length L is approximately equal to (combine equations (2.270) and (2.271)):

, 1 ;if 0F segment Z
Z

LP
d

(2.272)

If Z>0, the assumption of a Gausian ergodic process does not hold and an alternative
solution is required. In that case, Z>0 represents the part of the correlation function that does
not contribute to the length effect, because it is the correlation that persists over the entire
dike segment. In that case the Z-function is split in an ergodic part (with  approaching zero
over long distances) and a non ergodic part (with  constant):

1Z v u (2.273)

Where v is the non-ergodic constant and u is the ergodic stochastic process with:

2

2exp
Z

yy
d

, (2.274)

Where  is the correlation between two locations within the segment and y is the distance
between two locations. Using the theorem of total probability, the failure probability of the
flood defence segment can be described as follows:

0 0 | VP Z P Z v f v dv , (2.275)

Where fV(v) is the standard normal density function. The conditional failure probability,
P[Z<0|v], in equation (2.275) can be written as (see Jongejan, 2012):
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P Z v P Z e

LN e
d

v

(2.276)

Where Zcross and cross are the Z-function and reliability index of the cross section and  is the
standard normal distribution function. The combination of equations (2.275) and (2.276)
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provide the probability of failure for a flood defence segment. More details on the derivation of
equations (2.275) and (2.276) can be found in Jongejan [2012].

Note: In formula 2.276 the width of the mechanism is not taken into account. In the current
version of Hydra-Ring the width of the mechanism is taken equal to L. In the formula for Nf

the length L is replaced by L - L. The idea behind this “correction” is that for stretches
smaller than L it is not be possible to have an increase in failure probability as a result of the
length effect.

In earlier versions of PC-Ring, the predecessor of Hydra-Ring, the following approximation for
equations (2.275) and (2.276) was implemented to save computation time:

1
0 1 z

Z

L
P Z

d
, (2.277)

This approximation is only valid for small values of z. With the current day computation
power, equation (2.276) can be evaluated in a split second, so it is recommended not to use
the approximation as described with equation (2.277).

Note: Formula 2.277 is only valid for value of z > 0. For values of z  0 in Hydra-Ring the
Hohenbichler method together with the outcrossing approach is used.

2.5.5.2 Computing equivalent alpha-values
As stated in the previous section, the flood defence segment can be thought of to consist of
identical components of N identical components of length L. Upscaling to a dike section in
essence is therefore the same as upscaling over N identical components. The last step in
such an upscaling process, is the derivation of new equivalent -values for the individual
random variables, see section 2.4.3.2. The first step in this method is to determine the -
value of the correlated part of the Z-function of equation (2.273), i.e. variable v. This is done
in the standard way by perturbing the mean value of v with a small value  and quantifying the
effect on the computed -value of the dike section of a small perturbation ( ) in the mean
value of v. The -value of v is thus equal to

section
v v

(2.278)

Equation (2.177) states that the equivalent value, k
e, of variable k can then be derived as

follows:

2 1
1

1
k k k ke

k v v (2.279)

In which k is the -value of variable k before upscaling and k is the correlation of variable k
between two components. Since components in this case have length L, this correlation is
equal to (see equation (2.265):
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2

1 expk kr kr
k

L
d

(2.280)

Where, kr is the residual correlation length of variable k and dx is the spatial correlation
length of variable k. For load variables, k can be assumed to be equal to 1, which simplifies
equation (2.279) to:

e k
k v ; load variables (2.281)

2.5.6 Combination order over mechanisms and flood defense segments
In Hydra-Ring, the failure probability is computed per flood defence segment (e.g. dike
segment) and per failure mechanism. The method of Hohenbichler (see section 2.4.2) is used
for this purpose. This section describes the order of combining failure probabilities over failure
mechanisms and segments.

Consider an example with two failure mechanisms and m dike segments, in which the failure
probability for each segment and mechanism has already been computed. The Z-functions
per segment and mechanism can be given in terms of their  and  values.

Table 2.8  Z functions per segment and failure mechanism written in terms of their  and  values.

Segment Failure mechanism 1 Failure mechanism 2
1

11 11 111 11 11 1... n nZ u u 21 21 211 11 21 1... n nZ u u
2 12 12 121 21 12 2... n nZ u u 22 22 221 21 22 2... n nZ u u

…
m

1 1 1 1 1 1...m m m m mn mnZ u u 2 2 2 1 1 2...m m m m mn mnZ u u

In Table 2.8, Zij represents the Z-function for failure mechanism i and segment j. The variable
ujk represents the kth random variable in the jth segment and ijk is  the -variable for the kth

random variable in the jth segment and the ith failure mechanism.

There are two ways in which the combination can be carried out:

1) First combine the failure probability over the segments (per failure mechanism), and
then combine over the failure mechanisms.

2) First combine the failure probability over the failure mechanisms (per segment), and
then combine over the segments.

It turns out that application of the first option leads to a practical problem and therefore option
(2) is programmed in Hydra-Ring. To explain this issue, both options will be discussed and
the difficulty with option (1) will be explained.
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2.5.6.1 Option 1: First combining over segments, then over mechanisms

The combination order described by option (1) first combines the failure probability over the
segments per failure mechanism. This step results in the following:

Table 2.9  Z functions per failure mechanism of the combined segment

Segmen
t Failure mechanism 1 Failure mechanism 2

combine
d (1-m)

1 11 12 10 0 ... 0e
mZ P Z Z Z 2 21 22 20 0 ... 0e

mZ P Z Z Z

The variables Z1
e and Z2

e in Table 2.9 represent the equivalent Z functions for the two failure
mechanisms, combined over the m segments. Z1

e and Z2
e can also be written in terms of their

respective  and  values:

1 1 11 11 1 1...e e e e
n nZ u u .

(2.282)

2 2 21 21 2 2...e e e e
n nZ u u

In equations (2.282), e
ik represents the equivalent -value for the ith failure mechanism and

the kth random variable. Similarly, uik refers to the u-value of the the ith failure mechanism and
the kth random variable.

To combine over the failure mechanisms, using the method of Hohenbichler, the correlation
coefficient between the two Z-functions needs to be calculated according to formula (2.119).
Within that formula, the correlation coefficients between the random variables in equation
(2.282) are required, i.e. (u1k,  u2k), k=1..n. The problem is that once the Z-functions have
been combined over all the segments, it is no longer known what the correlation is between
random variables for the different failure mechanisms. Take for example the wave height.
Within a segment, the correlation between the wave height for failure mechanism 1 and
failure mechanism 2 is equal to 1, because it concerns the same location. Once the segments
have been combined it is no longer known how the wave height in failure mechanism 1 is
correlated with the wave height in failure mechanism 2. It is for this reason that the
combination takes place first over the failure mechanisms (where the correlation between
variables is 1 within a segment), and then over the segments, where the spatial correlation
between the random variables is known.

2.5.6.2 Option 2: First combining over mechanisms, then over segments

The combination order described by option (2) first combines the failure probability over the
failure mechanisms per segment. This step results in the following:

Table 2.10  Z functions per segment of the combined failure mechanism

Segment Combined failure mechanism

1
1 11 210 0eZ P Z Z

2
2 12 220 0eZ P Z Z
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…

m
1 20 0e

m m mZ P Z Z

The variables Z1
e,  Z2

e,  …,  Zm
e in Table 2.9 represent the equivalent Z-functions for the m

segments, combined over the two failure mechanisms. The functions Z1
e,  Z2

e,  …,  Zm
e can

also be written in terms of their  and  values:

1 1 ... ; 1..e e e e
j j j j jn jnZ u u j m (2.283)

In equation (2.283), e
jk represents the equivalent -value associated with the jth segment and

the kth random variable. The Z-functions of equation (2.283) are obtained by combining over
the failure mechanisms, using the method of Hohenbichler. For this purpose, the correlation
coefficient between the Z-functions of the failure mechanisms are needed. The correlation
coefficient between the random variables in one failure mechanism and the random variables
in the other failure mechanism is equal to 1 within a segment, i.e. (u1k, u1k)=1, k=1..n.

To combine over the segments, the correlation coefficient between Z-functions again needs
to be calculated according to formula (2.119). Within that formula, the correlation coefficient
between the random variables in one segment and the random variables in another segment
are needed. This correlation coefficient is simply the spatial correlation between the random
variables, which can be computed from the residual correlation and the correlation length, see
equation (2.265). The residual correlation and the correlation length are given as input. For
details on computing the correlation coefficient from the residual correlation and the
correlation length, the reader is referred to section 2.5.5.

Note: In option 2 the correlation between stochastic variables is more realistic taken into
account. For example: For the mechanisms within one section some stochastic variables are
equal and used in more than one mechanism. An example is the dike height. For these
variables the correlation should be set to 1.
In the case of option 1 in the combination of the mechanisms it is not sure the dike height is in
the same section. Therefore the correlation should be set to 0 fore these variables.

2.5.7 Order of combining: wind directions
In addition to combining over segments and failure mechanisms, failure probabilities are also
combined over wind directions. The computation structures for computing failure probabilities
in Hydra-Ring are carried out per failure mechanism, per segment and per wind direction. The
wind directions are combined in “the inner loop”. This means that by default the order of
combinations occurs first over wind directions, prior to the combination over the dike
segments and failure mechanisms. The reason to combine the wind directions before
conining over segment is the same as why the mechanisms are combined before the
segments are combined (see previous section). However, there is no particular reason why
the wind direction is combined before the mechanisms are combined, i.e. the other way
around would also have been possible.



1206006-004-ZWS-0001, 2 January 2013, draft

Hydra Ring Scientific Documentation 109 of 259

2.6 Procedure for computing the failure probability of a flood defence system

2.6.1 Introduction
Section 2.4 and 2.5 described the various combining techniques for system reliability that are
implemented in Hydra-Ring. The current section presents an overview of the whole procedure
that is applied in Hydra-Ring to derive the failure probability of a flood defence system. This
means the interaction between the various combining techniques is explained. Furthermore,
some ‘finer details’ of the various methods will be explained that have been left out of the
description so far.

The procedure is explained for the three different alternatives for upscaling probabilities in
time: FBC, NTI and APT (see section 2.5.2). The choices and assumptions in these methods
are such that they strongly influence the procedure for computing failure probabilities for flood
defence systems. The user can select which method is to be used for upscaling in time. The
choice of the method determines the order in which the subroutines are executed.

2.6.2 Procedure for FBC
The procedure for computing the failure probability of a flood defence system, using the FBC
procedure for upscaling in time, can be summarized as follows:

1. Determine the failure probability of the smallest component, i.e. a combination of one
cross section, one sub-mechanism one wind direction, one closure situation and one
basic time step.

2. Combine the failure probabilities of the sub-mechanisms to one failure probability per
failure mechanism.

3. Repeat steps 1 and 2 iteratively to derive the appropriate block duration for each load
variable.

4. Combine failure probabilities of the closure situations with the possible closure scenarios.
5. Upscale the failure probability of a cross section to a dike section.
6. Combine the failure probability for each wind direction with the probability of occurrence

of that wind direction.
7. Combine the failure probabilities of all wind directions.
8. Derive the influencing factor of the wind direction.
9. Upscale the failure probabilities to a year.
10. Combine failure probabilities of all failure mechanisms.
11. Combine failure probabilities of all segments.

The remainder of this section elaborates on each of these steps.

2.6.2.1 Step 1: Failure probability per sub-mechanism
In this step, the failure probability of the smallest component is computed, i.e. a combination
of one cross section, one sub-mechanism one wind direction, one closure situation and one
basic time step. For this purpose the computation techniques for the failure probability for
single components are used (see section 2.2). The choice of the method is user-defined.

2.6.2.2 Step 2: Combine failure probabilities of the submechanisms
For failure mechanisms that consist of multiple submechanims, step 1 has to be applied for
each submechanism. An example of such a failure mechanism is ‘piping and heave’, which
only occurs if the two submechanisms ‘piping’ and ‘heave’ both occur (at the same time at the
same cross section). Subsequently, the failure probabilties of the submechanims need to be
combined, with one of the combination techniques of section 2.4. For failure mechanisms that
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do not consist of multiple submechanisms, the result of step 2 is the same as the result of
step 1.

2.6.2.3 Step 3: Determine the block duration
The block duration is essential in the FBC procedure (see section 2.5.2.3). This duration
needs to be determined for each load variable. For fast evolving random variables like wind
speed and sea water level, the block duration is equal to the basic time step (generally one
tidal period). For slowly evolving variables like river discharge or lake level, the block duration
depends on the threshold value under consideration. Within a block, the represented (slowly
varying) load variable is assumed to be fully autocorrelated and between blocks there is
constant correlation (in Hydra-Ring often assumed to be zero).

The block duration of variable Q is derived from a duration curve: N(q) = the average duration
of a single exceedance of threshold q. By definition, N is a non-increasing function of q. This
function is input of Hydra-Ring. The block duration for variable Q is taken to be equal to N(qd),
where qd is the derived value of Q in the design point. The problem, however, is that the block
duration is required to determine the design point (to be explained below). Therefore, the
block duration and the design point need to be derived in an iterative manner. The procedure
starts with an initial estimate of the block duration. Subsequently, steps 1 and 2 of the
previous subsections are executed, which results in a designpoint. From the design point a
new block duration N(qd) is determined. This procedure is repeated until the block duration
has converged. Generally, this only takes a few steps. The result of the procedure is a
combination of a block duration and design point that are mutually consistent.

As stated before, the design point that is determined in steps 1 and 2 depends on the block
duration. This has to do with the fact that the statistics of variable Q are “rescaled” in such a
way that they are valid on the time scale of the block duration. The reason for this is that in
the FBC approach the block duration of variable Q is the basic time scale for variable Q. Each
block can be considered as a separate sample of variable Q. Therefore, the statistics that are
used for variable Q need to be applied on the time scale of the block period. Generally,
statistics are available on the annual time scale, which is why the rescaling procedure is
required. The details of the rescaling procedure will be explained later on, in section 3.3.3, but
it is immediately evident that the considered time scale will have on influence on the statistics
that are applied. The probability of exceedance of a certain threshold level q will be different if
we consider e.g. a period of one year than if we consider just one day. The probability will
increase (formally: not decrease) if the considered time scale increases. This shows that the
selected block duration for variable Q influences the probabilities of exceedance of threshold
values of Q.

2.6.2.4 Step 4: Combine the failure probability for closure scenarios
In areas where flood defences are protected by a storm surge barrier, the state of the barrier
influences the water level and consequently the probability of failure of the flood defences.
The barrier can be in various states (open, closed, partially closed etc.) and the barrier may
fail to/open/close upon request. This results in several scenarios for a flood barrier (correctly
closed, incorrectly open etc) as described in section 2.5.4. Steps 1-3 need to be executed
seperately for each barrier scenario and subsequently the failure probabilities for each
scenario need to be combined using e.g. the combination techniques of section 2.4.

Before the scenarios can be combined, first a temporal upscaling step is required. The reason
is that for the slowly evolving load variables like river discharge and lake level a block
duration has been determined in step 3. This block duration is determined seperately for each
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barrier scenario and therefore most likely will be different for each scenario. This mean the
scenarios cannot be combined directly because the components representing the scenarios
represent different time scales. In order to overcome this discrepancy, the components are
upscaled to the largest block duration over all the considered scenarios. This step is
schematically depicted in Figure 2.43.

Block duration

S1

S2

SNs

Largest block duration

...

upscaling

Figure 2.43 Schematic view of upscaling the block duration to the largest block duration of all Ns barrier scenarios.
This step is executed for each random load variable.

This step is executed for each random variable. In other words; for each random variable the
scenario with the largest block duration is determined and the components that represent the
other scenarios are upscaled in order to guarantee that the block duration for this random
variable is the same for all scenarios. The upscaling for 1 scenario is carried out as follows:

Consider variable Q with a block duration Ti for scenario i. This variable needs to be upscaled
to the maximum block duration Tm,  with  Ti  Tm. this means the component representing
scenario i needs to be upscaled with a factor N=Tm/Ti. In the FBC model, variable Q for
scenario i is fully autocorrelated within the block of time scale Ti whereas there is no
autocorrelation over larger time scales. In the upscaling from time scale Ti to  Tm, the
autocorrelation of variable Q is therefore set equal to 0. Since only variable Q is considered
(the other variables are upscaled in subsequent steps) the autocorrelation of all the other
variables is set equal to 1. This means the other variables have no influence on the failure
probability in the upscaling process. The autocorrelation of the component that is scaled up in
time, is therefore equal to:

2 20 1 1 1t q q q (2.284)

In which q is the derived -value of random variable Q. So the upscaling procedure for
random variable q and scenario i involves the upscaling of an component with autocorrelation

t according to equation (2.284) over a factor N= Tm/Ti. For this purpose, the method for
upscaling over N equal components is the most efficient (see section 2.4.3), but also the
Hohenbichler method can be used or other combining techniques. Note that the fact that N is
likely not to be an integer in this case is no obstacle whatsoever.
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The procedure is repeated for all scenarios and all random variables. The result is a set of -
values and  for each barrier scenario, that represent mutually consistent time scales.
Subsequently an overall failure probability for all scenarios combined can be computed with
e.g. the combining techniques of section 2.4.

2.6.2.5 Step 5: Upscaling from cross section to a flood defence section.
For this purpose the method as described in section 2.5.5 is applied. The probability of failure
for a cross section is upscaled to the probability of failure for an entire flood defence section,
taking into account the spatial correlation of all the random variables involved. This step will
increase the failure probability, except in the hypothetical case were the spatial correlation is
equal to 1.

2.6.2.6 Step 6: Incorporation of the probability of occurrence per wind direction.
Steps 1-5 are all executed separately per wind direction. The result is a probability of failure
of a flood defence section (for one failure mechanism and one closure scenario) given the
wind direction. The next two steps (step 6 and 7) are to incorporate the probability of
occurrence of the wind direction and to combine the failure probabilities of all wind directions.
Before these steps are executed a temporal upscaling step is required.
The next step is to incorporate the probability of occurrence of the wind direction in order to
obtain the probability of failure and the wind direction. In formula, the following is computed:

0i iP Z (2.285)

Where Zi is the Z-function for wind direction i,  is the wind direction and I is wind sector i.
The manner in which this probability is computed is explained in section 2.5.3.2.

2.6.2.7 Step 7 Combine the failure probability for wind directions
In this step the probabilities of failure per the wind direction are combined to compute an
omni-direction failure probability:

1

0 0
SN

i i
i

P Z P Z (2.286)

Where Ns is the number of wind direction sectors, Z is the omnidirectional Z-function and the
other variables are as defined in section 2.6.2.6. The manner in which this probability is
computed is explained in section 2.5.3.2.

Before the failure probabilities of the wind directions are combined, first a temporal upscaling
procedure needs to be done in order to make the block durations of all random variables
consistent over the wind directions. This is a similar step as described in step 4, in which the
barrier scenarios were combined. For each random variable involved, the largest block
duration over the Ns wind directions is determined and subsequently all components
representing the wind directions are upscaled to this largest block duration.

2.6.2.8 Derive the influencing factor of the wind direction
This step is described in section 2.5.3.3.
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2.6.2.9 Step 9: Upscaling to a year.
The previous steps result in a failure probability for a single dike section and a single failure
mechanism. The time scale for which this failure probability is derived is the block duration,
which can be different for the various random load variables. Therefore, first an upscaling
needs to be done to scale all variables to the same block duration, i.e. the largest block
duration of all random load variables. The upscaling is done step by step from the smallest
block duration to the second smallest, then to the third smallest etc. up to the largest block
duration. This process is schematically depicted in Figure 2.44.

Block duration

X1

Largest block duration

upscaling

X2

Xn

Figure 2.44 Schematic view of upscaling the block duration to the largest block duration of all n random load
variables.

Consider a single upscaling step from duration D1 to duration D2. As described above, the
procedure is such that there are no block durations between D1 and D2. This means all load
variables with a block duration <D2 have a block duration  D1. In the FBC model, a random
variable is fully autocorrelated within the period of its block duration, whereas there is no
autocorrelation over larger periods. This means in the upscaling from D1 to  duration  D2, all
variables with a block duration  D1 have an autocorrelation equal to 0, whereas all the other
variables have an autocorrelation equal to 1. These autocorrelations are used in the following
equation to compute the autocorrelation of the component over the interval [D1, D2]:

2

2 2

1 *

n n

k k k
k k D

(2.287)

In which  is the autocorrelation of the component, k is the autocorrelation of the kth load
variable, k is the -value of variable k and D* is the set of variables for which the block
duration is  D2. Each upscaling step can be executed using e.g. the combination techniques
of section 2.4. The result of one upscaling step is a (new) set of -values for all random
variables and a (new)  for the upscaled component.
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After all variables have been upscaled to the time scale of the largest block duration, the next
step is to upscale the component from the largest block duration to a year. In this step, the
autocorrelation for all random variables is equal to 0 because the upscaling is done for for
time scales that are larger than the largest block duration. This means that the autocorrelation
for the entire component is equal to 0. The upscaling is once again done with the the
combination techniques of section 2.4.

2.6.2.10 Step 10: Combining failure probabilities of mechanisms
The previous steps result in a failure probability for a single dike section and a single
mechanism for the period of a year. The next step is to combine the failure probabilities for all
considered mechanisms. This is done with the combining methods of section 2.4. The result
is the annual failure probability for one dike section.

Note: this procedure is relatively straightforward in PC-Ring, for Hydra-Ring it will be slightly
more  complex.  Not  so  much  from  a  computational  point  of  view,  but  more  from  a
programming point of view. This has to do with the fact that in PC-Ring all failure mechanisms
are evaluated on the same set of segments. Within Hydra-Ring it is the objective to have a
subdivision of the dike ring in subsections that can be different for different failure
mechanism. The difficulty is that failure mechanisms cannot be combined directly anymore,
because they do not necessarily refer to the same dike section. So the combining needs to be
done for the parts of the sections where there is overlap and that brings with it some
“administration” as there are many combinations of schematisations possible.

The method in Hydra-Ring is to define “presentation segments” for which the combining
results of the mechanisms will be derived (see the design document and Figure 2.45). The
results for each mechanism first need to be rescaled to the presentation segments.
Subsequently, the mechanisms are combined to derive the failure probability of the
presentation segment with the combining techniques of section 2.4. Theoretically, a dike
segment can be spread out over multiple presentation sections. In practice, however,
presentation segments will be at least the scale of the dike segments, which means one dike
segment is spread out over 2 presentation segments at most. The representative cross
section of the dike segment therefore needs to be upscaled to:

1 The dike section;
2 The overlap of the dike section with the first presentation segment;
3 The overlap of the dike section with the second presentation segment.

The upscaling technique will be the same as the one that is used in step 5. Note that the -
values and  of the cross section are required, so these upscaling steps either need to be
done in step 5, or the -values and  of the cross section need to be stored and used as
additional input of step 9.
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Figure 2.45 Illustration of different divisions for different mechanisms, and an additional division for presentation of
combined results.

2.6.2.11 Step 11: Combining failure probabilities of segments
The last step is to combine the failure probabilities of the segments. This is done with the
combining techniques of section 2.4.

2.6.3 Procedure for NTI
The procedure for computing the failure probability of a flood defence system, using the NTI
procedure for upscaling in time, can be summarized as follows:

1. Determine the failure probability of the smallest component, i.e. a combination of one
cross section, one sub-mechanism one wind direction, one closure situation and one
basic time step.

2. Combine the failure probabilities of the sub-mechanisms to one failure probability per
failure mechanism.

3. Combine failure probabilities of the closure situations with the possible closure scenarios.
4. Upscale the failure probability of a cross section to a dike section.
5. Combine the failure probability for each wind direction with the probability of occurrence

of that wind direction.
6. Combine the failure probabilities of all wind directions.
7. Derive the influencing factor of the wind direction.
8. Combine failure probabilities of all basic time steps (generally a tidal period) within the

time scale of the slowly evolving random variables.
9. Upscale the failure probabilities to a year.
10. Combine failure probabilities of all failure mechanisms.
11. Combine failure probabilities of all segments.

Relevant differences with the FBC procedure are:

 The combining for wind directions can be executed directly after the loop over all wind
directions is finished. The same holds for the closure scenarios. The difference with FBC
is that for FBC an upscaling procedure for block durations is required before the
combining can be carried out.

 Failure probabilities are computed seperately for each basic time step in the schematized
hydrograph of the slowly variying random variable(s). The resulting failure probabilities
are different for each time step, as each time step represents a different phase in the
evolution of the hydropgraph. This means steps 1-7 need to be repeated T times, where T
is the number of basic time steps within the hydrograph. This is the reason why NTI
requires more computation time than FBC.

Mechanism 2

Presentation
segments

Mechanism 1
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 Upscaling to a year is started from a different time scale. For FBC this time scale is the
largest block duration over all random load variables, whereas for NTI this is the duration
of the schematised hydrograph of the slowly variying random variable(s), see section
2.5.2.

2.6.4 Procedure for APT
The procedure for computing the failure probability of a flood defence system, using the APT
procedure for upscaling in time, can be summarized as follows:

1. Determine the failure probability of the smallest component, i.e. a combination of one
cross section, one sub-mechanism one wind direction, one closure situation and one
basic time step.

2. Combine the failure probabilities of the sub-mechanisms to one failure probability per
failure mechanism.

3. Combine failure probabilities of the closure situation with the possible closure scenarios.
4. Upscale the failure probability of a cross section to a dike section.
5. Combine the failure probability for each wind direction with the probability of occurrence

of that wind direction.
6. Combine the failure probabilities of all wind directions.
7. Derive the influencing factor of the wind direction.
8. Upscale the failure probabilities from the basic time step (generally a tidal period) to the

time scale of the slowly evolving random variables.
9. Upscale the failure probabilities to a year.
10. Combine failure probabilities of all failure mechanisms.
11. Combine failure probabilities of segments.

Relevant differences with the NTI procedure are:

 For NTI, failure probabilities are computed seperately for each basic time step in the
schematized hydrograph of the slowly variying random variable(s). The resulting failure
probabilities are different for each time step, as each time step represents a different
phase in the evolution of the hydropgraph. This means steps 1-7 need to be repeated T
times, where T is the number of basic time steps within the hydrograph. For APT, steps 1-
7 are executed only once and the resulting failure probability can be upscaled directly to
the time scale of the hydrograph. The different phases in the hydrograph are represented
by a scaling factor c, which is a random variable in the APT approach.
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3 Hydraulic load models: generic set-up

3.1 Introduction
The main objective of Hydra-Ring is to quantify the probability of flooding of areas that are
protected by a system of flood defences such as dikes, dunes or hydraulic structures (‘dike
ring’). As described in chapter 2, this is done by first computing failure probabilities of flood
defences at individual locations (cross sections) and subsequent integration to the failure
probability of an entire dike ring, taking spatial correlations into account. Failure occurs when
the resistance (R) of a flood defence is exceeded by the hydraulic load (S).

For each cross section of the flooddefence system, the probability that S>R is quantified. The
load, S, typically consists of the combination of water levels and waves and in some cases
currents. In order to determine failure probabilities, the relevant statistical feautures of water
levels and waves are required. Unfortunately, for most dike sections there are no
measurements available of water levels and waves directly in front of the flood defence.
Statistics of water level and waves therefore need to be estimated from other sources. For
this purpose, a hydraulic load model is required.

This section describes the relevant features of hydraulic load models as implemented in
Hydra-Ring. There are multiple hydraulic load models in Hydra-Ring because of the
differences in characteristics of the various water systems. However, the set-up of the load
models follows as much as possible a generic pattern.

Section 3.2 describes the general concept of hydraulic load models and the role of these
models in probabilistic failure computations. The subsequent sections (3.3-3.5) describe the
major components of the hydraulic load models. Section 3.3 describes random variables and
the associated probability distribution functions that quantify their statistical properties.
Section 3.4 describes correlation models that quantify the statistical dependence between
random variables. Section 3.5 describes the hydrodynamic models that are applied to derive
the hydraulic load at the flood defence.

3.2 Hydraulic load models in probabilistic failure computations

3.2.1 Introduction
In chapter 2 it was described that Hydra-Ring uses the following two-step procedure to
quantify the probability of failure of a dike ring:

1. quantification of the probability of all the individual components of the system, and
2. integration of the failure probabilities of the components to derive the failure probability of

the entire system (system analysis).

A single component in Hydra-Ring refers to a combination of one cross section, one failure
mechanism, one wind direction, one closure scenario and one relatively small (<1 day) time
interval during which load conditions are assumed to be constant. The information that is
contained in the load models is mainly used to determine the failure probability of individual
components (step 1), as will be described in section 3.2.2. But also for the system analysis
(step 2) some statistical information on hydraulic loads is required, especially on spatial and
temporal correlations.
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3.2.2 Hydraulic load models in probabilistic failure computations for single components
Section 2.3 describes the probabilistic methods that are implemented in Hydra-Ring for
computing failure probabilities for individual components: FORM, numerical integration and
three variants of Monte Carlo (Crude Monte Carlo, directional sampling and importance
sampling). For practical purposes, these methods work with standard normally distributed
variables U1,…,Un that represent the ‘real world’ variables X1, …,Xn. Variables X1, …,Xn
typically describe load characteristics like sea water level or river discharge and flood defence
characteristics like dike height or grain size. In each of the probabilistic methods, the
dependence of the limit state function, Z, on the U-variables is explored in order to quantify
the probability that Z<0, i.e. to quantify the probability of failure. Essentially this is done
according to the following procedure:

1 Translation of ‘hydraulic’ U-variables into ‘real world’ X–variables;
2 Translation of ‘hydraulic’ X-variables into the hydraulic load (S) at the flood defence;
3 Translation of ‘’resistance’ U-variables in ‘real world’ X–variables;
4 Quantification of the resistance (R) of the flood defence from the ‘resistance’ X-

variables;
5 Comparison of load and resistance to determine Z=R-S

In the probabilistic computations, this procedure is repeated multiple times to provide
sufficient insight in the function Z(U) and to subsequently provide an estimate of the failure
probability. Steps 1 and 2 above are essentially the hydraulic load model. In step 1
realisations of the U-variables are transformed into corresponding realisations of the X-
variables. The generic concept of the transformation is explained in section 2.2.3. If the X-
variables are mutually independent, the transformation between U-variables and X-variables
is based completely on the probability distribution functions of the individual X-variables. If the
X-variables are not mutually independent, correlation models are required to describe the
transformation between U-variables and X-variables. Furthermore, correlations in space and
time need to be taken into account.

Each load model roughly consists of the following four components (see Figure 3.1):

1 probability distribution functions of random load variables;
2 correlations between the random variables and correlations in space and time;
3 physical relations that translate possible realizations of the random variables into

hydraulic loads at flood defences; and
4 additional load parameters.

These four items are discussed in more detail below.

[1] The random variables describe the potential events that may result in failure of the flood
defences. These random variables include river discharge, wind speed, sea water levels or
malfunctioning storm surge barriers. The probability distributions describe:

 probabilities of exceedance of (high) threshold values;
 probabilities of occurrence of “discrete” events, such as the probability that the wind

direction is within a given sector or the probability of a malfunctioning barrier;
 probabilities of durations of exceedances of threshold levels

Section 3.3 provides more detail on probability distribution functions
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Figure 3.1 Incorporation of the load model in the probabilistic failure computation of a single component.

[2] Statistical dependence among random hydraulic variables generally stems from the fact
that they have a common meteorological cause. Usually, this dependence increases the
probability of occurrence of floods. Therefore, in many applications in flood risk analysis there
is a need for techniques that describe the statistical dependence among random variables.
Hydra-Ring describes statistical dependence through application of a library of generic
correlation models.

Correlation in time (autocorelation) is mainly relevant for relatively slowly varying random
variables like river discharge and lake level. The basic model time step in Hydra-Ring
currently is one tidal period, i.e. a little over 12 hours. The probability of failure of a flood
defence is first computed for a single tidal period and subsequently the probability is
integrated to a period of one year. For the slowly varying variables like river discharge and
lake level, the correlation between two successive tidal periods is close to one, and therefore
needs to be taken into account. Also for resistance variables, the correlation in time between
two successive tidal periods is close to one.

For “faster” varying variables like wind speed and sea water level, the (auto-)correlation is
assumed to be small enough to be neglected. In reality, there is of course some correlation.
Nevertheless the error introduced, especially for higher thresholds of wind speed and river
discharge, is small. This is due to the fact that statistics of extremes for these variables are
generally derived at the annual scale, and then rescaled to the tidal scale, using the same
assumption of zero autocorrelation (see section 3.3.3). Subsequent use of the same
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assumption in the probabilistic computations will result in reproduction of the correct
exceedance probilities at the annual scale. For lower threshold of the wind speed and sea
water level, the error introduced may be more substantial. Potential consequences of this
assumption for the non-tidal river area in the Netherlands have been analysed in Geerse en
van Veen, [2007]. It was concluded that this may lead to a small overestimation of the failure
probability.

Correlation in space for load variables is generally much larger than for variables describing
the strength of the flood defence. Within specified regions in the Netherlands, a 100% spatial
correlation of random load variables is generally assumed. Inbetween regions, spatial
correlation is sometimes taken to be lower than 100%.

Section 3.4  provides more details on correlation models.

[3] For all potential events, described by the random variables, the resulting hydraulic load at
the flood defences (water levels, waves, currents) needs to be derived. This is generally
achieved by executing a large number of hydrodynamic model simulations. Well-selected
realisations of the random variables are used as boundary conditions for the hydrodynamic
model simulations. The hydrodynamic model simulations are executed prior to the application
of Hydra-Ring and the relevant model results are stored as input databases. These
databases serve as a look-up table to link the random variables (input) to the hydraulic load at
the flood defence (output). In some hydraulic load models, relatively straightforward empirical
relations are used as an alternative to input, for example the Bretschneider equation for
estimating wave height as a function of the wind and the river geometry.

Section 3.5 provides more details on hydrodynamic models.

[4] Some models of failure mechanisms require additional hydraulic input variables that are
not directly related to high water events, for example the mean sea water level. These
variables are not influenced by the random variables of step 1, and are therefore not part of
the loads that are derived in step 3. Others, such as the water level at the inner slope of a
dike, are treated as being completely independent of the random variables of step 1, even
though in reality there may be some dependence. These type of additional loads need to be
derived for each dike section separately. This is a pre-processing step for Hydra-Ring and the
results are stored in input databases.

The additional load variables will be described in chapter 5, where all the failure mechanisms
are described.

3.2.3 Generic, modular set-up of load models in Hydra-Ring
Hydra-Ring uses system units that are referred to as regions. For each region a separate load
model is created in Hydra-Ring. Regions are therefore combinations of locations for which the
same load model is used. The choice of the regions is therefore determined by the clustering
of locations for which it makes sense to apply the same load model, i.e. locations that are
related to the same set of random variables and hydraulic load models. Generally, the regions
are associated with different water systems (i.e. rivers, lakes, sea) but sometimes also
different types of flood defences (dikes, dunes) require different load models.

Currently, there are 16 regions defined in the Netherlands (see Table 4.1). The associated
load models are described in chapter 4. It is likely that Hydra-Ring will be extended with
additional load models for other areas, in the Netherlands or abroad. Furthermore, multiple
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versions of the load model may be created for a single region, e.g. for purposes of research,
development (beta-versions) and impact assesment of climate change or flood mitigating
measures. This increases the need for Hydra-Ring to be set-up in a clear, structural and
transparent manner. For this reason a generic, modular structure for describing load models
is designed and implemented in Hydra-Ring.

In the generic structure, a modular approach is used, making sure the load models make use
(as much as possible) of the same set of routines. Routines that more or less serve the same
purpose are clustered in libraries. The libraries are designed in such a way that the
input/output structure of all the modules in the library is the same. Example libraries in the
computational core of Hydra-Ring are:

 Library of probabilistic computation techniques for single components (see section 2.3)
 Library of statistical distribution functions (see section 3.3)
 Library of correlation models (see section 3.4)
 Library of failure mechanisms (see chapter 5)

The specific characteristics of a load model are all stored in input databases. Among others
these databases contain parameter values of distribution functions and correlation models of
the random variables and results of hydrodynamic model simulations. The use of input
databases means the model code does not contain any region-specific information. The
names of the regions are therefore not part of any “if-statement” in the code. One of the main
advantages of this set-up is that new load models can be added to Hydra-Ring without having
to change the code. Furthermore, it makes the code easier to maintain as no region specific
exceptions need to be verified when the code is changed.

3.3 Statistical distribution functions of random variables

3.3.1 Generic description of the application of distribution functions
As stated in the previous section, probabilities of exceedance of random variabels like river
discharge, sea water level and wind speed need to be described by the hydraulic load model.
The following three types of functions can be used to describe the statistical properties of
random variables:

1 Cumulative distribution function (CDF);
2 Inverse cumulative distribution function (inverse CDF);
3 Probability density function (PDF).

The CDF, F(x), provides the probability of non-exceedance, p, of each potential realisation, x,
of random variable X. The inverse CDF, F-1(p), provides the realisation x that has a probability
of non-exceedance p. The relation between the CDF and the inverse CDF is thus as follows:

1F x p x F p (3.1)

The PDF, f(x), is the derivative of the CDF:

( )
x dFF x f d f x x

dx
(3.2)
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The PDF provides the probability density for any given value of x. The probability density is
the probability per unit value. For the normal distribution function, the pdf is the “famous” bell-
shaped curve. As an example, Figure 3.2 shows the CDF, inverse CDF and PDF of the
standard normal distribution function.
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Figure 3.2 PDF (top), CDF (middle) and inverse CDF (bottom) of the standard normal distribution function
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The CDF, F(x), has the flowing properties:

1 F(x) is non-decreasing;

2 lim 0
x

F x ;

3 lim 1
x

F x .

Property 1 can be easily proven: if x1<x2, then P[X x1]  P[X x2] and thus F(x1)  F(x2). For a
formal proof of properties 2 and 3, the reader is referred to Grimmet and Stirzaker [1982, pp
20]. But even without a proof it is intuitively clear that a realization from a probability function
will be lower than  and higher than - .

Since F(x) is non-decreasing, the inverse CDF, F-1(p), is also a non-decreasing function. In
probabilistic computations in Hydra-Ring, mainly the inverse CDF, F-1(x),  of  a  variable  X  is
applied, as schematically depicted in Figure 3.3. The library of distribution functions in Hydra-
Ring therefore mostly consists of inverse CDF’s. The procedure of Figure 3.3 is explained
below.

Figure 3.3 Procedure for determining a load variable associated with a randomly selected standard normally
distributed variable (u-value), for the case of uncorrelated variables

As described in section Section 2.3 and 3.2.2, random variables are represented by
standardised U-variables in the probabilistic computations in Hydra-Ring, and the function
Z(U) is explored to derive an estimate of the failure probability. In order to evaluate function
Z(U), the realisations of the U-variables are first translated to the correspdonding realisations
of the X-variables and subsequently the Z-value is determined. Assume for the sake of
simplicity that the X-variables are mutually independent (correlations will be dealt with in
section 3.4). As explained in section 2.2.3, the transformation from a realization, u, of variable
U, to realization x, of variable X, is done in such a away that the (non-)exceedance
probabilities of u and x are equal. This transformation, as depicted in Figure 3.3, can be
formulated as follows:

1u F x x F u , (3.3)
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where:

 = standard normal distribution function
F = CDF of variable X
F-1 = inverse CDF of X
x = realization of X
u = realisation of U

This procedure automatically guarantees that variable x is a realization from distribution
function F(x) and therefore correctly represents the statistical properties of variable X. This is
demonstrated below.

First  it  needs  to  be  shown  that  the  value  p  = (u) is a realization from a standard uniform
distribution function. The standard unform distribution function is the CDF in which each value
in the range [0,1] has equal probability density. The CDF of this function is as follows (see
also Figure 3.4):

0 ; 0
;0 1

1 ; 1

x
F x x x

x
, (3.4)

Consider a realization, u*, of the standard normal distribution function with a probability of
non-eceedance equal to p* = (u*). By definition this means that the probability that a random
sample u from the standard normal distribution function does not exceed u* is equal to p*. In
formula:

* *P u u p , (3.5)

Since  is a CDF, it is a non-decreasing function. Therefore it follows from equation (3.5)
that:

* *P u u p , (3.6)

And since by definition p*= (u*), this simplifies to:

* *P u p p , (3.7)

So the probability that (u) does not exceed a given value p* (0 p* 1) is equal to p*. This
shows that (u) is a realization from a standard uniform distribution function, as described by
equation (3.4) and depicted in Figure 3.4.
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Figure 3.4 Standard uniform distribution function (CDF)

It has been demonstrated that the value p in Figure 3.3 is a realization from the standard
uniform distribution function. The next step is to show that the value x = F-1(p) in Figure 3.3 is
a realization from distribution function F(x). For this purpose, consider a value x* with
probability of non-exceedance p*. This means: F(x*) = p* and x* = F-1(p*). The value p in
Figure 3.3 is taken from a standard uniform distribution function (as proven above), which
means:

* *P p p p (3.8)

Since F is an inverse CDF, it is a non-decreasing function and therefore it follows from
equation (3.8) that:

1 1 * *P F p F p p (3.9)

By definition x* = F-1(p*) and x = F-1(p), which means equation (3.9) simplifies to:

* *P x x p (3.10)

Since p* = F(x), this means:

* *P x x F x (3.11)

This shows that value x in Figure 3.3 is a realization from distribution function F(x).

To summarize: In probabilistic computations in Hydra-Ring, Hydra-Ring works with standard
normalized U-variables. The limit state function Z(U) is explored to derive an estimate of the
failure probability. In order to evaluate function Z(U), the realisations of the U-variables are
first translated to the correspdonding realisations of the X-variables to be able to determine
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the Z-value. In this transformation, the inverse CDF of variable X is applied, to provide
variable X with the correct statistical properties.

3.3.2 Standard distribution functions and parameter values
Table 3.1 shows the set of statistical distribution functions that are included in the library of
Hydra-Ring. Each of these distributions and the required input parameters will be described in
detail in chapter 6. As described in the previous section, the library contains the “inverse
cumulative distribution functions” which means the input consists of a probability, p, of non-
exceedance and the output consist of the associated realization, x, of the variable that is
described with this distribution function.

Besides p, the input of the inverse CDF’s also consists of a set of parameter values  = ( 1,
…, n). These parameter values quantify the relation between p and x. Note that the value of n
can be different for different distribution functions, as shown in the second column of Table
3.1. Each distribution function as mentioned in Table 3.1 has a fixed number, n, of
parameters but the values of these parameters will be different for different variables. So, for
instance, it is possible to describe both river discharge and sea water level with the lognormal
distribution, but the values of the two parameters of this distribution function for river
discharge will be different from the values that are used for sea water level. In other words:
the same module can be used to describe probabilities of different random variables and
differences between the variables are characterized by differences in parameter values.

Table 3.1  Probability distributions of load variables, supported in Hydra-Ring.

Probability distributions Number of parameters
Uniform 2
Normal 2
(Shifted) lognormal 3
(Shifted) exponential 2
Gumbel 2
Weibull 3
Rayleigh 2
Pareto 3
Triangular 3
Multi-linear interpolation Variable
Modified Gumbel 3
Conditional Weibull 4

3.3.3 Temporal scaling of statistical distribution functions
The basic model time step in Hydra-Ring is one tidal period, i.e. a little over 12 hours. The
probability of failure of a flood defence is first computed for a single tidal period and
subsequently the probability is integrated to a period of one year. In order to compute the
failure probability for one tidal period, the statistical properties of the random variables are
required. However, statistical distribution functions of random variables are generally only
available for the annual time scale. For instance, statistics of extreme sea water levels are
usually derived from annual maximum observations or all observations above a user-defined
threshold. The resulting distributing function, F(x), therefore usually expresses the probability
that within any given year the value of x is exceeded. The probability of an exceedance over a
period of a year is generally (much) larger than the probability of exceedance within a tidal
period. The available annual statistics of the random variables therefore need to be translated
to statistics per tidal period.
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First consider a fast evolving random variable like sea water level. The values of such a
variables in successive tidal periods are assumed to be independent (see section 2.5.2).
Suppose there are N tidal periods in a year, this means the fast evolving variables can be
modeled by taking N independent samples. In that case the following holds:

m m
N

y tP X x P X x (3.12)

Where
Xmy = annual maximum value of variable X;
Xmt = maximum value of variable X in a tidal period;
N = number of tidal periods in a year.

Equation (3.12) shows how the probability of non-exceedance for a year can be derived from
the probability of non-exceedance for a tidal period. This transformation is added as an
additional step to the procedure as depicted in Figure 3.3. In that procedure, the probabilistic
computation begins with a realization, u, of a standard normally distributed variable U.
Subsequently, the associated probability of non-exceedance is computed. The value of p is
translated to the realization, x, of random variable X. For this translation the inverse CDF, F-1,
is required. However, probability p refers to a tidal period, whereas FX

-1 refers to a year.
Therefore, probability p is transformed to the annual probability through application of
equation (3.12). The resulting annual probability is used as input for function FX

-1, which
provides the required value of x as output. Figure 3.5 shows the inclusion of this additional
step to the procedure of Figure 3.3. In formula, this means the value of x is derived as follows:

1
,

N
x yearx F u , (3.13)

Figure 3.5  Schematization of the procedure going from a u-value to an x-value. The step highlighted by the red box
is the additional step required when scaling the probability in time.
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An important note is that the value of N will be different for slowly evolving random variables
like river discharge and lake water level. The reason is that the realizations of these variables
in consecutive tidal periods are highly correlated. This means that equation (3.12) is not valid
for these variables, if N is the number of tidal periods in a year. For slowly evolving variables,
the value of N should therefore be taken equal to the number of independent periods in a
year. The value of N for these variables is therefore related to the value of Tb or  Tm,
depending on whether they are modeled according to the FBC method or the APT/NTI
method respectively (se section 2.5.2 for a description of the FBC, APT and NTI methods and
the definition of durations Tb and Tm).

Input statistics of Hydra-Ring may represent the annual time scale, whereas others may
represent smaller time scales such as a monthly or a tidal period. It is relevant to take these
differences in time scales into account. Therefore, the input database of Hydra-Ring demands
that the time scale is added to the statistical distribution functions of each random variable.

3.3.4 Statistics of durations
The basic model time step in Hydra-Ring currently is one tidal period, i.e. a little over 12
hours. The probability of failure of a flood defence is first computed for a single tidal period
and subsequently the probability is integrated to a period of one year. In the upscaling
process, the correlation between failure probabilities of subsequent time steps is relevant
(see section 2.5.2). This correlation depends on the autocrrelation of the random variables
involved. For strength variables, the correlation between all time steps in the year is assumed
to be equal to 1. For “faster” varying variables like wind speed and sea water level, the
correlation between subsequent time steps is assumed to be small enough to be neglected
and is therefore taken equal to 0.

For slowly evolving variables like river discharge and lake water level a hybrid approach is
used and for this approach, statistical information on durations is required. The year is
considered to be divided into a number of periods. Within a single period, the autocorrelation
in time for the slowly evolving variables is taken equal to 1, whereas the autocorrelation
between different periods is taken equal to 0 (see section 2.5.2). Hydra-Ring offers three
approaches for modelling the temporal evolution and related autocorrelation of slowly
evolving random variables (see section 2.5.2):

1 NTI
2 APT
3 FBC

In the first two methods, the time evolution of the slowly evolving variables within a single
period is described by a standardised hydrograph (a trapezium, see Figure 3.6) whereas for
FBC the value within a single period is assumed to be constant (a block representation, see
Figure 3.7). In both cases the peak values are random variables that are considered
independent of neighbouring blocks/trapeziums. Besides the peak value, a single trapezium
is characterised by the base duration, Tm, and peak duration Tp, whereas a block is
characterised by the block duration Tb.
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Figure 3.6 Modelling the temporal evolution of discharges and lake levels using trapezia, for probabilistic
computation methods APT and NTI
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Figure 3.7 Modelling the temporal evolution of discharges and lake levels using “blocks”, for probabilistic
computation method FBC.

For example, the value of base duration Tm is assumed to be constant and taken equal to 30
days for the major rivers in The Netherlands (Rhine and Meuse), 30 days for the IJssel lake
and 60 days for the Marker lake. For other rivers or lakes a different value of Tm may be
considered. The choices of the values of Tp and Tb are variable and depend on the value of
the peak. This is done to guarantee that the resulting statistics are in accordance with
available statistics on durations, given as input of Hydra-Ring. The derivation of Tp and Tb
from these statistics is explained below.

Define, for any given threshold value q of the slowly evolving variable, Q, the following
statistics:
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F(q) = the average number of exceedances of q per year;
D(q) = the average number of days per year that q is exceeded;
N(q) = the average number of days of a single exceedance event of q.

The relation between these three functions is as follows:

D q
N q

F q
(3.14)

This is easy to comprehend: the total number of days above level q, divided by the number of
exceedances of level q provides the average duration of a single exceedance of level q.
Function N(q) is referred to as the “duration curve” and can be obtained from function F(q)
and D(q) that are generally more easier to obtain directly from the data.

In the FBC method, the duration curve determines the choice of the the block duration, Tb.
The block duration is set equal to the value N(qd), where qd is the selected value of the slowly
evolving variable in the design point (see section 2.5.2.3 for an explanation on design points).
In order to derive the value of peak duration Tp of the trapezium in the APT and NTI method,
the probability is considered that at an arbitrary moment, the value of Q exceeds threshold q:

1 ( ) ( , )
m q

P Q q f L q d
T (3.15)

Where L(q, ) denotes the duration above level q inside a trapezium with peak value  and f is
the derivative of function F(q) above. Function f is therefore directly available from the data,
whereas L(q, ) depends on the choice of peak duration Tp. The peak duration should be
chosen such that the probability of equation (3.15) is in accordance with function D(q), i.e. the
probability should be equal to D(q)/365. This generally means that the peak duration Tp is
dependent on the peak value of the trapezium. An example of the resulting relation between
the peak duration and the peak value is shown in Table 4.2 for the river Rhine at location
Lobith. A general method for the derivation of this relation is described in Section 8.2 and 8.3
of Geerse [2011].

For APT and NTI a table like Table 4.2 needs to be available for all slowly evolving random
variables. For FBC, the duration curve, N(q), needs to be derived. Hydra-Ring supports two
options for describing the duration curve. The first is a fitted n-degree polynomial distribution
to the values of N(q). The parameters of this polynomial are input into Hydra-Ring. The
second option is a table containing two columns. The first column gives q values and the
second column gives N(q) values. Hydra-Ring uses interpolation (either linear or log-linear) to
compute N-values between the discrete values in the table.

3.4 Correlation models

3.4.1 Introduction
In Hydra-Ring, three types of correlations are considered:
 Correlations between different random variables, e.g. the correlation between sea water

level and wind speed;
 Correlation in time, e.g. the correlation between river discharge on day t and river

discharge on day t+1
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 Correlation in space, e.g. the correlation between the wind speed at 2 different locations.

The three types of correlations are discussed in the sections below

3.4.2 Correlations between random variables

3.4.2.1 Generic description
In section 3.3 the procedure for applying statistical distribution functions of random variables
in Hydra-Ring was explained. In the explanation, the X-variables were assumed to be
mutually independent for the sake of simplicity. In many cases, however, random variables of
hydraulic load models are not mutually independent. For instance, wind speed and sea water
level are correlated and the same generally can be stated for river discharges of adjacent
rivers (such as the Rhine and Meuse in the Netherlands). Correlation between two random
variables X1 and  X2 needs to be taken into account in probabilistic analysis because they
influence the probability of failure of the component or system under consideration. In Hydra-
Ring, correlation is taken into account with correlation models. Different correlation models
are used, in order to be able to encapture specific characteristics of correlation structures.
This section describes the generic approach of the correlation models.

The generic approach for modeling correlation between two random variabels X1 and X2 is to
generate realizations u1,cor and u2,cor from correlated standard normal variables U1,cor and
U2,cor.1 The correlated realizations are subsequently translated into realizations x1 and x2 from
“real world” variables X1 and X2 through application of the procedure of section section 3.3
(i.e. through application of inverse CDF’s of variables X1 and X2). The procedure is depicted
in the figure below. The horizontal part of this figure is the exact same procedure as depicted
in Figure 3.3 and explained in section 3.3. The correlation model can therefore be considered
as pre-processing to the procedure in which the distribution functions are applied.

Figure 3.8  Procedure for determining a load variable associated with randomly selected standard normally
distributed variables for the case of correlated variables

1 Note that u1 and u2 are strictly speaking only “realisations“ if a Monte Carlo procedure is applied, see section 2.3. For
methods like FORM and numerical integration, u1 and u2 are strategically selected values, not samples from a
simulation of a distribution function. However, this fundamental difference in interpretation of u1 and u2 has no
influence on the applied methods as described in the current section.
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Since U1,cor and  U2,cor are correlated variables, X1 and X2 are also correlated. Furthermore,
since  U1,cor and U2,cor are standard normally distributed and the translation from U1,cor and
U2,cor to  X1 and  X2 is done in the exact same way as described in section 3.3, it is
automatically taken care of that X1 and  X2 are distributed according to their prescribed
distribution functions FX1 and FX2. The remainder of this section therefore focuses on the first
part of the procedure: the generation of samples u1,cor and u2,cor of correlated variables U1,cor
and U2,cor.

The generation of u1,cor and  u2,cor starts with the generation of realizations u1 and  u2 of
independent standard normally distributed random variables U1 and U2. Subsequently, u1 is
transformed into a sample v of variable V with distribution function FV(v). The transformation
is done in similar style as explained in section section 3.3, i.e. by making sure the probability
of (non-)exceedance of u1 and v are equal:

1
1 1V Vu F v v F u (3.16)

There are no limitations in the choice of distribution function FV(v), but generally standardized
distribution functions, such as the standard normal, standard uniform or standard exponential
distribution function are used for convenience. Subsequently, a sample w is introduced that is
dependent on v and u2:

2,w G v u (3.17)

Were G is a function of two variables. The fact that w is a function of v introduces correlation
between v and w. Subsequently, v and w are translated to samples u1,cor and u2,cor of standard
normally distributed variables U1,cor and U2,cor by setting equal their respective probabilities of
(non-)exceedance. This means u1,cor is exactly the same as u1, but u2,cor will be different from
u2 because of the use of function G.

1u

2u

Standard Normal

vF v

wG

1,coru

2,coru

Correlated
Standard Normal

1
WF

1
VF

Figure 3.9 Procedure for samples u1,cor and u2,cor of correlated standard uniform random variables U1,corr and U2,cor`.

Function G is essentially the correlation model for variables X1 and X2. Virtually any bivariate
function G (note: G is not a distribution function) can be selected, also because the
subsequent transformations gaurantee that variables X1 and  X2 are indeed distributed
according to the pre-defined distribution functions FX1 and FX2. Naturally, function G should be
such that it mimics the observed correlation between variables X1 and  X2 as accurate as
possible. For a more detailed background on the derivation and application of correlation
models in flood risk analysis, the interested reader is referred to the paper of Diermanse and
Geerse [2012].
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The correlation models in Hydra-Ring are set up in a modular way, which means additional
correlation models can easily be added, as long as they use the structure as described
above. The following sections present some example of correlaton models, in order to make
the general description more tangible.

3.4.2.2 Example 1: the HES-model
The HES model is shorthand for “heteroscedastic model”. The name refers to the fact that
this model allows for variation in correlation. The model is very flexible and allows the user to
set up a broad range of correlation structures. The model is described in the paper of
Diermanse and Geerse [2012]. Note: in some other documentations of Hydra-Ring this
correlation model is referred to as the ‘NL-model’.

The model is developed to describe the correlation between two random variables, X1 and X2
and ascoiated standard normal random variables U1 and U2. In the model, U1 is the
independent variable and U2 the dependent variable (see Figure 3.9 for reference). The first
step in the model is to translate the independent variable, U1, to a standard exponentially
distributed variable V.

1
1 1ln 1Vv F u u (3.18)

The transformation is such that v and u1 have the same probability of (non-)exceedance. (see
section 2.2.3 for more information on this type of transformations). The next step is to
compute the realization, w, of the dependent variable W. To describe the computation of w,
first a couple of definitions are given. Let (t) be a probability density function with a mean of
0 and a standard deviation of 1. This can be, but does not necessarily need to be, a standard
normal density function. From (t), distributions of the same type, but with different standard
deviations, can be derived through the following transformation:

1t t (3.19)

Density function (t) has a mean of 0 and a standard deviation equal to . The cumulative
distribution function, , is as follows:

t t (3.20)

Where  is the CDF that is associated with . The value of w is computed as a combination of
the realization, v, of the independent variable (correlated part) and the realization, u2, of the
standard normal variable, U2, (uncorrelated part):

1
2vw v u (3.21)

This is essentially the description of function G of formula (3.17), see Figure 3.9. A schematic
showing the relationship between w, v, and u2 is shown in Figure 3.10. The dashed line
shows the correlated part of the relationship between v and w. The distribution around that
line, in this specific case illustrated as a normal distribution, is also shown for two selected
values of v. Note that in Figure 3.10 the standard deviation can vary with v. That is, for
increasing values of v, the standard deviation of w values around v can increase or decrease.
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In order to establish a constant variance over v, the function (v) is simply set equal to a
constant. The relationship (v) needs to be determined apriori and included as input to the
correlation model. The procedure to determine (v) is an iterative one, and is described in
Diermanse & Geerse [2012].

Figure 3.10  Schematic illustrating the relationship between w, v, and u2 in the NL model.

As stated above, equation (3.21) is essentially the description of function G of Figure 3.9.,
Function G relates the transformed dependent variable W to the transformed independent
variable V. The next step in the correlation model is to transform the variables V and W to
standard uniform variables U1;corr and U2;corr. For this purpose, the distribution functions FV(v)
and FW(w) are required.

Variable V is standard uniformly sitributed, so the transformation from V to U1;corr is done as
follows:

1 1
1; 1 v

corr Vu F v e (3.22)

This transformation is the inverse of the transformation in equation (3.18), which means u1;corr
is  exactly  the  same as  u1. For variable W the transformation to the corresponding variable
U2;corr is less straightforward, since there is generally no analytical description available of
distribution function FW(w). This distribution can be derived from the following integral
(according to the theorem of total probability):

0 0

expw V vF w f v P W w v dv v w v dv (3.23)
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In a probabilistic computation procedure, this integral has to be solved numerically for each
realization w. In Hydra-Ring, for computational efficiency, the integral is evaluated prior to the
probabilistic computation for the whole range of w-values. The result is a table of w-values
and associated probabilities, which serves as a lookup-table during the probabilistic
computation. The transformation from W to U2;corr is done as follows:

1
2;corr Wu F w (3.24)

3.4.2.3 Example 2: correlation model PCR
The correlation model referred to as PCR is given this naming convention because it is the
correlation model which was developed and used as the standard correlation model in PC-
Ring, i.e. the predecessor of Hydra-Ring. The model contains strong similarities with the HES,
except that it includes a simplifying approximation for reasons of computation efficiency. The
simplification lies in the fact that variable w assumed to be exponentially distributed, which
means the integral of equation (3.23) is left out of the process. The reduction in computation
time was valuable in the period that PC-Ring was developed, but with current computation
power this is not the case anymore. The main reason to implement this model in Hydra-Ring
as well is to be able to compare results of Hydra-Ring with PC-Ring.

Just as with the HES model, the PCR model works with an independent variable V and a
dependent variable W. V is once again standard normally distributed and realizations, v, of
this variable are therefore derived according to equation (3.18). Similarly, realizations of
variable W are derived according to equation (3.21). However, in this case the choices of
parameter  and function  are related (whereas in the HES model these can be chosen
independently):

2

22
w v u (3.25)

In equation (3.25),  is the parameter of the correlation model and gives the measure of
correlation. Small values of  correspond to high correlation, and large values of
correspond to weak correlation. If we compare equations (3.21) and (3.25), it can be seen
that the latter is a special case of the former. In equation (3.25),  is a normal distribution
function with standard deviation , while parameter  is equal to – 2/2. This shows  and
are related in this correlation model through the choice of parameter .

Figure 3.11 shows the assumed probability density function of variable W in the PCR model,
i.e the standard exponential density function. Furthermore, it shows the probability density
function of the HES model, fW(w), in case of a constant standard deviation. As can be seen,
fW(w) converges to the standard expontial density function in the right tail. In other words: for
larger values of w, variable W of the HES model with constant correlation is (asymptotically)
standard exponentially distributed.

As just mentioned, in the PCR model the assumption is made that variable W is standard
exponentially distributed over the entire domain. This means the transformation from variable
w to the standard normal variable u2;corr is done as follows:

1 1
2; 1 w

corr Wu F w e (3.26)
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This assumption is the reason why the PCR-model requires less computation time than the
HES-model, since equation (3.26) is much easier to solve than the combination of equations
(3.23) and (3.24). However, by making the assumption of a standard exponential distribution
function, the PCR-model introduces an error, especially in the left tail, as can be seen in
Figure 3.11. This error will propagate in the value of u2;coor and eventually also in x2, i.e. the
realization of the associated “real-world” variable X2. The reasoning behind the PCR model is
that for failure computations only large values of load variables are relevant and therefore the
error introduced in this correlation model is negligible. Unfortunately, this assumption does
not hold in each case, because lower values of load variables can be relevant for failure as
well. For instance at a location near the sea in a tidal river system, failure (flooding) most
likely occurs in an event with extremely high sea water levels in combination with “average”
river discharges. If the river discharge is estimated from the PCR model, significant errors
may be introduced in estimating the probability of occurrence of such an event. It is therefore
recommended to apply the HES model (section 3.4.2.2) instead of the PCR model, especially
since the gain in computation time of the PCR model is very marginal with present day
computers.

Figure 3.11 Probability density function of variable W in the PCR-model, compared with the density function of a
standard exponential distribution function

3.4.2.4 Other correlation models
Currently, the library of correlation models of Hydra-Ring contains two additional correlation
models (additional to the HES model and the PCR model). However, these two models have
been designed for one specific application in the Netherlands. They are set-up in a generic
way and therefore can be applied to other areas as well, but the specific characteristics of
these models make the need for such applications unlikely. These two correlation models are
discussed in the sections were the specific load models are described (sections 4.5.1.4 and
4.10.1.2)

3.4.3 Correlation in time and space
For strength parameters the correlation between subsequent time steps is assumed to be
equal to 1. For “faster” varying variables like wind speed and sea water level, the correlation
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between subsequent time steps is small enough to be neglected and is therefore taken equal
to 0. For the slowly varying variables like river discharge and lake level, For slowly evolving
variables like river discharge and lake water level a hybrid approach is used as described in
section 2.5.2. For these variables, the year is considered to be divided into a number of
periods. Within a single period, the autocorrelation in time for the slowly evolving variables is
taken equal to 1, whereas the autocorrelation between different periods is taken equal to 0
(see section 2.5.2).

Correlation in space for load variables is generally much larger than for variables describing
the strength of the flood defence. Within specified regions in the Netherlands, a 100% spatial
correlation of random load variables is generally assumed. In between regions, spatial
correlation is sometimes taken to be lower than 100% (see Table 4.41, chapter 4).

3.5 Hydrodynamic models

3.5.1 Simulating water levels and waves in an entire water system
The previous sections described the statistical properties of the load variables. Combinations
of samples of load variables can be considered as synthetic events that may lead to failure of
the flood defence system. For each event the resulting hydraulic load at the flood defences
(water levels, waves) needs to be derived, in order to provide an estimate of the failure
probability. This is generally achieved by executing a large number of hydrodynamic model
simulations. In the hydrodynamic simulations, well-chosen realisations of the random
variables are used as boundary conditions for the hydrodynamic model. The model
simulations are executed prior to the application of Hydra-Ring and the relevant model results
are stored as input databases for Hydra-Ring. These databases serve as a look-up table to
link the random variables (input) to the hydraulic load at the flood defence (output).

For example, the water level in a tidal river is influenced by several factors, such as the
upstream river discharge, the downstream sea water level, the local wind speed and the local
wind direction. For such an area, hydrodynamic simulations need to be executed for all
potential combinations of river discharge, sea water level, wind speed and wind direction that
may lead to failure (flooding) somewhere along the tidal river area.

The events that are simulated should cover the extent of all events that are relevant for flood
risk analysis. One of the main challenges in probabilistic flood analysis is to minimize the
number of hydrodynamic simulations (to save computation time) and at the same time not to
exclude the events and processes that are relevant for estimating flood risks. The choice of
simulated events therefore requires sufficient knowledge of the system.

Examples of hydrodynamic models that are used to generate the input of Hydra-Ring are:

1 One-dimensional hydrodynamic models for predicting water levels in rivers;
2 Two-dimensional hydrodynamic models for predicting water levels in rivers, lakes and

along the coast line;
3 Wave simulation models for prediction wave characteristics on lakes, rivers and along

the coast line.
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3.5.2 Models for quantification of local (corrections on) hydraulic loads

3.5.2.1 Introduction
The hydrodynamic models as mentioned in section 3.5.1 generally produce water levels and
wave conditions at locations at some distance from the toe of the flood defence. In some
applications, additional models are required to translate conditions from the model output
locations to the toe of the flood defence. Hydra-Ring contains various methods and models
for this purpose:

1 The Bretschneider model for estimating local wave height as a function of the wind and
the river geometry.

2 A model to compute wind set-up in rivers
3 The foreshore model for estimating the influence of a forshore on waves;
4 The breakwater model estimating the influence of a breakwater on waves;
5 Spatial interpolation methods.

These models are relatively straightforward and therefore not very time consuming. They are
built into the Hydra-Ring code and are executed multiple times during the probabilistic
computations. The folowing sections elaborate on these models.

3.5.2.2 Wave model Bretschneider
The Bretschneider formulas, which describe wave period and wave height, represent a
simplified approach which is only valid under highly schematized conditions. However, given
the simplicity of its use, it is often used in practice when a more sophisticated wave
propagation model is unavailable.

The Bretschneider formulas rely on the following variables: a representative wind speed (U),
a representative water depth (D), and a representative fetch length (F). The formulas return
the significant wave height (Hs) and significant wave period (Ts). In practice, it is typically the
peak wave period (Tp) that is the required output of load models. To convert from the
significant wave period to the peak wave period, the following relationship is often sufficient in
case of single-peak wave spectra:

1.08p sT T (3.27)

The Bretschneider formulas can be written in terms of dimensionless quantities; that is the
wind speed U, water depth D, fetch length F, significant wave height Hs and significant wave
period Ts can be made dimensionless as follows:
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Where g represents the graviational constant, with units m/s2. The Bretschneider formulas for
the dimensionless wave height and wave period are as follows:
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The empirical constants in equations (3.32) and (3.33) are given below:

A = 0.283
B = 1.2
k1 = 0.0125
k2 = 0.077
k3 = 0.530
k4 = 0.833
m1 = 0.42
m2 = 0.25
m3 = 0.750
m4 = 0.375

Note that to get the dimensional quantities Hs and Ts from sH and sT , the relationships in
equations (3.30) and (3.31) can be used.

To account for the uncertainty (error) in the empirical model, the formulas for wave height and
wave period are multiplied by model factors, which have a mean of one, and a standard
deviation represented by the degree of uncertainty expected for the situation under
consideration. The model factor for the wave height is denoted mH, and the model factor for
the wave period is denoted mT. Furthermore, the formula for the wave height is multiplied by a
wave reduction factor, K. The final formulas are thus as follows:
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And thus (see equations (3.30) and (3.31)) the dimensional quantities Hs and Ts are equal to:
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In tidal systems, the wave height and wave period can be influenced by swell, which refers to
a long wave duration with a low wave height. To account for the influence of swell, the
following corrections are made.

2 2
1 2s s sH H H (3.38)
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(3.39)

where Hs1 and Ts1 are the significant wave height and wave period computed with the
Bretschneider model (equations (3.36) and (3.37)), and Hs2 and Ts2 are the significant wave
height and wave period of swell. These values have to be determined externally and added to
Hydra-Ring through input databases. In non-tidal systems, no corrections are applied for
swell.

When a shallow foreland is present, this limits the ability of the wave height to increase due to
the breaking of waves. To take this physical limitation into account, the wave height computed
by Bretschneider is subjected to the following constraint:

0.5s dH h (3.40)

where hd is the water depth at the toe of the flood defence.

The wind speed that is required as input for the Bretschneider formulas is the “open water
wind speed”, u10, at a height of 10 metres above water. In practice, sometimes only statistics
of the potential wind speed, u, are available. In that case a translation from u to u10 is required
to apply the Brettschneider formulas. Table 3.2 shows the relation between u and u10. For
values of u in between the tabulated values, lineair interpolation is used to obtain u10.
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pot. wind 10 m wind pot. wind 10 m wind pot. wind 10 m wind
m/s m/s m/s m/s m/s m/s

0 0.00 17 18.53 34 35.59
1 1.12 18 19.56 35 36.56
2 2.25 19 20.59 36 37.53
3 3.37 20 21.62 37 38.50
4 4.49 21 22.64 38 39.47
5 5.61 22 23.66 39 40.43
6 6.74 23 24.68 40 41.39
7 7.86 24 25.69 41 42.34
8 8.97 25 26.69 42 43.30
9 10.06 26 27.69 43 44.25
10 11.14 27 28.69 44 45.20
11 12.21 28 29.69 45 46.14
12 13.28 29 30.68 46 47.08
13 14.34 30 31.67 47 48.03
14 15.39 31 32.65 48 48.96
15 16.44 32 33.64 49 49.90
16 17.49 33 34.62 50 50.83

Table 3.2 Transformation of the potential wind speed u to the open water wind speed u10.

3.5.2.3 Local wind set up in rivers
Local wind set up in a river leads to a difference in the water levels at the axis of the river and
at the toe of the dike. This wind set-up can be estimated with the following formula (see de
Waal, 1999 and Geerse, 2011):
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. cos / .

 voor

  voor
(3.41)

In which
F = fetch length (m),
D = water depth (m)
B = width of the river (m)

= angle between the wind direction and the orientation of the dike
= model parameter

3.5.2.4 Foreshore model
Water levels and wave conditions can change substantially from the hydrodynamic model
output location to the flood defence, particularly when there is a foreshore present. The effect
of foreshore on the loads is that the water level increases due to wind effects and the wave
height is further dampened. Figure 3.12 illustrates the effect that a foreshore (foreland) can
have on the loads at the flood defence.
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Figure 3.12  Illustration of the effect that the foreland can have on the load conditions at the toe of the dike. The
horizontal dashed line indicates the water level without the presence of a foreland (Figure, adapted from De
Waal, 1999).

A model to determine the impact of a foreland on the water level and wave conditions has
been implemented in Hydra-Ring. Specific information about the models is not currently
contained in this documentation but can be found in De Waal [1999].

If a foreshore, with varying bottom levels, is present in front of the dike, the wave conditions at
the beginning of the foreshore have to be transformed to wave conditions at the toe of the
dike. This transformation is done in the foreshore module with the model ENDEC (acronym
for Energy Decay. ENDEC calculates changes in wave height and wave direction, but not of
the wave period, due to:

 refraction (bending of waves as a consequence of changes in bottom levels),
 shoaling (changes in wave height due to changes in bottom levels),
 energy loss by breaking of waves,
 energy loss by bottom friction,
 energy gain caused by wave growth due to wind.

ENDEC also calculates the (usually small) changes of the water level as a consequence of
wave set-up and wave set-down, whereas changes in the wave period (decrease by breaking
or increase by wind) are neglected.

In the original ENDEC model, no changes of the water level caused by wind set-up were
taken into account. For some situations this could lead to an underestimation of the water
level and waves at the toe of the dike. At a later stage, therefore, wind set-up was
implemented in the foreshore module. In the module first the wind set-up is calculated for the
specified profile of the bottom. Afterwards, the ENDEC calculation is performed. When using
ENDEC, it is important to note that the model is 1-dimensional, and therefore of limited
accuracy.

3.5.3Transformation module for a breakwater

A breakwater is a structure which is designed to reduce the wave height; the reduction is a
function of the crest height of the structure and the shape of the structure (rubble mound,

Break-
Water
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Hydrodynamic
model output

location

Waves + water level
after breakwater

module

Waves + water
level at toe of

dike

Load

Wind
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caisson, vertical wall). Figure 3.12 illustrates the effect that a breakwater can have on the
loads at the flood defence. The effect of a breakwater is that the wave height is dampened;
there is no effect on the water level (i.e. the breakwater does not close of the area), wave
period and wave direction.

hydraulic
load

reduced
hydraulic

load

Breakwater

Hsa Hsb

Figure 3.13 Schematic view of wave reduction, caused by a breakwater (figure adapted from De Waal, 1999)

The significant wave height directly behind the dam is assumed to be influenced by wave
transmission across the dam only – wave penetration through holes in the dam is neglected.
Strictly speaking, the latter contradicts the assumption of equal water levels on both sides of
the breakwater in front and behind the dam if between the dam and the dike there is a closed
basin and the dam has no holes (a non-porous dam). The actual assumption is: regarding the
water level the dam is assumed to have openings, with equal water levels before and after,
while regarding the waves the dam is assumed to have no openings. The reduction of the
wave height is computed as follows (see de Waal, 1999 and Geerse, 2011):

sb T saH K H (3.42)

In which
Hsa = incoming significant wave height;
Hsb = reduced significant wave height;
KT = reduction factor.

The reduction factor is derived as follows:
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In which:

Zd = the crest height relative to the water level (zd<0 if the crest is under water)
d, d = parameters, dependent on the type of breakwater (see Table 3.3)

Figure 3.14 shows the different types of breakwaters and the respective values for d and d.
Figure 3.15 shows the value of the reduction factor KT as a function of the ratio zd/Hsa. This is
the ratio between the crest height (relative to the water level) and the incoming wave height.
As can be expected, the reduction factor is close to 1 (i.e. almost no reduction of the wave
height) if the crest height is far below the still water level, whereas it is close to 0 (i.e. almost
no wave height remaining) if the crest height is far above the still water level.

dam caisson wall

Figure 3.14 Types of breakwaters (figure taken from: Geerse, 2011).

Table 3.3 Parameters d and d for different types of breakwaters
Type d d

Dam 2.6 0.15
Caisson 2.2 0.40
wall 1.8 0.10
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Figure 3.15 Reduction factor KT as a function of the relative crest height zd/Hsa

3.5.4 Spatial interpolation methods
In hydraiulic load models, statistics of load variables are initially available at a limited number
of locations. These can either be measurement stations, in which case the statistics can be
derived from measurement series directly, or output locations from hydrodynamic models in
which case statistics are derived by means of probabilistic computations. In some cases,
statistical information is required on locations where no such information is available. In that
case, spatial interpolation methods may provide the solution. For water levels, spatial
interpolation is generally more acceptable than for waves, since the spatial corraltion lengths
of waves are generally much smaller than for water levels.

In Hydra-Ring, the spatial interpolation is applied on water levels in river systems. For this
purpose, the water levels are interpolated between two adjacent locations for which water
level statistics are available. For sea level statistics, a triangular interpolation technique is
applied, i.e. 2-dimensional interpolation on water levels of three locations for which water
levels statistics are available. This method is applied to be able to model spatial variation of
water levels in two dimensions. The triangular interpolation method is explained in more detail
in section 4.8.2.1.
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4 Hydraulic load models for primary water systems in the
Netherlands

4.1 Introduction
Chapter 3 described the generic setup of hydraulic load models in Hydra-Ring. The current
chapter describes the load models that are implemented for the primary water systems in the
Netherlands. Table 4.1 shows the regions for the Netherlands that are currently implemented
in Hydra-Ring. The map of Figure 4.1 serves as a reference. The load models of these
regions will be described in more detail in sections 4.5-4.10. There are 16 load models for the
Dutch primary waters in Hydra-Ring, which means 16 different combinations of random
variables, correlation models and hydrodynamic models. The last column of Table 4.1 shows
that the 16 regions can be clustered into 7 types. Load models of regions that are of the same
type have a similar set-up and only differ in the details. In most cases the mutual differeneces
are between two load models of the same type are only in the choice of stations for which
statistics have been derived that are used to describe the random variables. Sections 4.5-
4.10 therefore describes the 7 types of load models.

More background on the derivation of statistics and implementation hydraulic load models for
primary water systems in the Netherlands, the interested reader is referred to:

 Coastal systems: Den Heijer et al, [2007] Gautier, en Groeneweg, [2011]
 Inland water systems: Berger, 2007, Geerse, C.P.M [2011]
 Impelmentation in PC-Ring (predecessor of Hydra-Ring) : Diermanse et al [2003],

Thonus et al [2003]

Table 4.1 Overview of regions in the TMR2006 database

number Region Load model type
1 Rhine branches, non-tidal zone Upper river, non-tidal

2 Meuse river non-tidal zoner Upper river, non-tidal
3 Rhine-Meuse delta, tidal area, Rhine dominated Rhine-Meuse delta; tidal influences

4 Rhine-Meuse delta, tidal area, Meuse dominated Rhine-Meuse delta; tidal influences

5 IJssel delta Lake delta

6 Vecht delta Lake delta

7 IJssel Lake Lake

8 Marker Lake Lake
9 Wadden Sea east Coastal; sea dikes

10 Wadden Sea west Coastal; sea dikes

11 North Sea coast; north Coastal; sea dikes

12 North Sea coast; middle Coastal; sea dikes
13 North Sea coast; south Coastal; sea dikes

14 Oosterschelde Coastal; sea dikes; barrier included

15 Westerschelde Coastal; sea dikes
16 Dunes Coastal; dunes
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Oosterschelde
Westerschelde

SeaSea andand estuariesestuaries

Wadden
Wadden SeaSea

Figure 4.1 Primary water systems of the Netherlands
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4.2 System characteristics

4.2.1 Upper rivers
The upper rivers (green lines in Figure 4.1) refer to the stretches of the river Meuse and the
Rhine branches (Waal, Lek, IJssel) in which there is no influence of tide or backwater effects
from the lakes. The threats for the dikes in this water system primarily result from high
discharges, causing high water levels in the Rhine and Meuse rivers. Additionally, wind
waves may cause wave run-up during events of high water. River discharge and wind (speed
and direction) are therefore the only random variables of the load models for the upper rivers.

4.2.2 Rhine Meuse delta
This water system (red lines in Figure 4.1) refers to the stretches of the river Meuse and the
Rhine branches in which water levels are influenced by the tide and storm surge in the North
Sea. For this reason, a tidal barrier has been constructed near the river mouth. The barrier
closes when high water levels at sea are predicted, to prevent high water levels in the river
branches. In the load model, it is taken into account that the barrier can fail to close due to
e.g. mechanical failures or human errors. Furthermore, it is taken into account that predicted
water levels, required to determine if the barrier needs to be closed, contain uncertainties.
Addional random variables in the model are river discharge, sea water level and wind (speed
and direction). Since high storm surges in the North Sea are caused by high wind speed, in
combination with westerly or northerly wind directions, the correlation between wind and sea
water level is a relevant aspect of this load model as well.

4.2.3 Lakes
The IJssel Lake and Marker Lake (dark blue areas in Figure 4.1) are seperated from each
other by the dike, The “Houtrib dike”. The inflow of the lakes consist of water from rivers, such
as the IJssel and Vecht, but also from polder systems. The IJssel lake is separated from the
sea by another dike, the Afsluitdijk. High lake levels in the IJssel Lake are the result of
extended periods during which the discharge of the IJssel river exceeds the outflow through
the sluices of the Afsluitdijk into the sea. Note that the Lake level refers to the spatially
averaged water level; water levels in the lake can vary spatially due to effects of wind set-up.
High water levels in the Lakes are therefore caused by a combination of high (spatially
averaged) lake levels and local wind set-up. Wind waves causing wave run-up add to the
hydraulic load.

Under “normal” conditions water from the IJssel lake is discharged ino the sea by gravity,
during periods of low tide. In case of high wind set-up at sea, this process may be hampered
which causes the lake level to rise. The same holds for the Marker lake, which under normal
conditions discharges its water into the North sea (it is connected by the North sea through a
canal).

4.2.4 Lake delta
The rivers Vecht and IJssel (orange lines in Figure 4.1) are contributaries of the IJssel lake.
The downstream strectches of these rivers are therefore referred to as the lake delta or,
alternatively, the IJssel and Vecht delta. As stated in the previous section, high water levels in
the IJssel Lake are the result of extended periods during which the discharge of the IJssel
river exceeds the outflow through the sluices of the Afsluitdijk into the sea. As a result, peak
discharges of the IJssel and Vecht rivers on one hand, and peak levels of the IJssel lake on
the other hand are correlated. This is relevant for dikes along the IJssel delta, because
increased lake levels will lead to increased water levels in the river due to backwater effects.
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The correlation between water levels in the lake and river discharges is therefore taken into
account in the load model. The load model is further complicated by the fact that there is a
barrier in the river mouth of the Vecht that closes when water levels in the lake near the river
mouth are too high, due to a combination of high lake levels and additional wind set-up.
Similar to the load model of the Rhine-Meuse delta, it is taken into account that this barrier
may fail to close due to e.g. mechanical failures or human errors.

4.2.5 Coastal zone; dikes
The coastal zone is depicted by the light blue area in Figure 4.1. High water levels along the
coast are a combination of high tides and storm surge. For most locations along the coast the
surge is the dominant factor in causing high water levels. High storm surges along the coast
are caused by strong westerly or notherly winds. In addition, these winds create waves that
furter increase the load on the flood defences. Wind and sea water level are the main random
variables in these load models. The correlaton between wind speed and sea water level is
taken into account. Waves are no random variables in coastal load models as they are
determined from hydrodynamic load models and as such deterministically related to the
random variables water level, wind direction and wind speed. The exceptions to this rule are
the regions along the Duth North sea coast for which the wave period is included as an
additional random variable.

4.2.6 Oosterschelde
The Oosterschelde is an estuary in the southwestern part of the Netherlands. It is separated
form the sea by a barrier. The barrier closes when high water levels at sea are predicted, to
prevent high water levels in the estuary. The effect of the closure of the barrier on water
levels in the Oosterschelde complicates the description of hydraulic loads and therefore a
separate load model for this area is required. Similar to the load models of the lake delta and
the Rhine-Meuse delta, it is taken into account that the barrier can fail to close due to e.g.
mechanical failures or human errors. Furthermore, it is also taken into account that predicted
water levels, required to determine if the barrier needs to be closed, contain uncertainties.
The manner in which the closure of the barrier influences water levels in the Oosterschelde is
further influenced by additional variables, such as the phase difference between the storm
surge peak and the peak of the tide and the storm surge duration.

4.2.7 Coastal zone; dunes
For dunes a separate load model is created. This is mainly due to the fact that for dikes the
load is determined for locations approximately 50-100 m in front of the dike, wheras for dunes
this is still the “active zone”, i.e. the zone in which large morphodynamical activities take place
during storm events. The hydraulic loads for dunes are therefore determined further seaward
in comparison with the load models for dikes. The random variables for the load model for
dunes are the water level, the wave height and the peak wave period. Correlations between
these random variables are also taken into account. The load model for dunes is the only
model in which the wind is not taken explicitely into account as a random variable. The
influence of wind is considered to be incorporated in the statistics of the water levels and
waves.

4.3 Random variables
Table 4.1 presents an overview of all random variables in the load models. Note that
variables like wind and water level have different statistical properties for different load
models and even within a single load model there can be differences. This is explained in the
subseqeunt sections.
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Table 4.1 Overview of load variables in the various hydraulic load models.

 Random variable
Upper
rivers

Sea
delta

Lake
delta Lake

Coastal
dikes

Ooster-
schelde

Coastal
dunes

wind speed x x x x x x
wind direction x x x x x x
river discharge x x x
lake level x x
sea level x x x x
wave height x
wave period x x
functioning of the barrier x x x
water level predictions for barrier x x
phase tidal peak-surge peak x
storm surge duration x

4.4 Load model for the upper rivers

4.4.1 Distribution functions of random variables
In the load model of the upper rivers, the following random variables are relevant:

 River discharge
 Wind (speed and direction)

4.4.1.1 River discharge
For river discharge, statistics of three locations are used in the load models of the upper
rivers:

1 The river Rhine at Lobith;
2 The river Meuse at Borgharen; and
3 The river Meuse at Lith

Station Lith is located downstream of station Borgharen. For all dike sections upstream of
Cuijk, statistics of station Borgharen are used to determine the hydraulic load. For all dike
sections downstream of Cuijk, statistics of station Lith are used to determine the hydraulic
load. For each station, three types of statistics are used in Hydra-Ring:

[1] Exceedance frequencies of peak discharges;
[2] Relationship between the peak value and peak duration of a discharge wave (see section

3.3.4) and
[3] A duration curve that describes the mean duration of an exceedance of discharge Q (see

section 3.3.4).

Statistics on [1] and [2] are input as tabulated values, see Table 4.2-Table 4.4 (see Geerse,
2008/2012 for a description of how the statistics have been derived). For the duration curve, a
third degree polynomial function is used:
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3 2( )N Q aQ bQ cQ d (3.1)

Where Q is the discharge and N is the average number of days that Q is exceeded during a
single exceedance event. The parameters a-d are displayed in Table 4.5

Table 4.2 - Lobith parameters for the exceedance probability and peak durations

LOBITH
Exceedance Probability of peak discharge Peak duration

Q [m3/s] probability [1 / (30 days)] Q [m3/s] Peak duration [hours]
750 1 750 720
1000 0.97 6000 12
1500 0.8 30000 12
3500 0.3 ------ ------
4500 0.22 ------ ------
5893.3 0.16667 ------ ------
7017 0.083333 ------ ------
10850 0.0066667 ------ ------
16000 0.00013333 ------ ------
18000* 0.00002918 ------ ------

Table 4.3 Lith parameters for the exceedance probability and peak durations

LITH
Exceedance Probability of peak discharge Peak duration

Q [m3/s] probability [1 / (30 days)] Q [m3/s] Peak duration [hours]
0 1 0 720
75 0.995 1315.1 12
200 0.88 6000 12
300 0.76 ------ ------
500 0.55 ------ ------
1315.1 0.16667 ------ ------
3652 0.00013333 ------ ------

Table 4.4 Borgharen parameters for the exceedance probability and peak durations

Borgharen
Exceedance Probability of peak discharge Peak duration

Q [m3/s] probability [1 / (30 days)] Q [m3/s] Peak duration [hours]
0 1 0 720

76.756 0.995 1315.1 12
204.683 0.88 6000 12
307.025 0.76 ------ ------
511.708 0.55 ------ ------
1350.15 0.16667 ------ ------
4020.68 0.000133 ------ ------

Table 4.5  Duration curve parameters (FBC model)

Station Duration curve parameters
a b c d

Lobith (Rhine) -7.150x10-13 5.872x10-8 -1.624x10-3 18.821
Borgharen (Meuse) -8.387x10-11 1.12x10-6 -5.493x10-3 13.75
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Station Duration curve parameters
Lith (Meuse) -8.387x10-11 1.12x10-6 -5.493x10-3 13.75

4.4.1.2 Wind
The statistics of the wind are described in section 4.5.1.3

4.4.1.3 Correlation between Rhine and Meuse discharge
In the non-tidal area, upstream of the confluence of Rhine and Meuse, water levels are
determined only by either the Rhine or the Meuse discharge. Nevertheless, the correlation
between Rhine and Meuse discharges is still relevant in this area. This is because a number
of dike rings are bordered by the Meuse in the South and by the Rhine branches in the North,
which means the correlation between the river discharges influences the total failure
probability of the dike ring.

The correlation between Rine and Meuse discharges can be described by different correlation
models. The PCR-model of section 3.4.2.3 can be used, in which parameter  is taken equal
to 1 (based on the analysis of Thonus and Diermanse, 2003). The preferred option, however,
is to use the HES-model of section 3.4.2.2, since that model provides more reliable results for
the entire range of discharges, whereas the PCR-model is only reliable for high (extreme)
river discharges. In order to make the HES model compatible with the PCR-model for
extreme discharges, the asociated distribution function, , for the independent part should be
normally distributed with  taken equal to 1. Parameter  should be taken equal to -0.5.

4.4.2 Hydrodynamic models
For the upper river area, model simulations were carried out with the 2-dimensional
hydrodynamic model WAQUA. The simulations were carried out for 9 discharges, covering
the whole range from average discharges to extreme discharges. The simulations have been
carried out for the rivers Rhine and Meuse separately. The output consists of water levels and
results are available approximately every kilometer along the river axis. For dike sections
inbetween these location, the local water level is computed by means of spatial interpolation,
using the available water levels of the closest upstream and downstream WAQUA model
output location. As such, the relation between discharge and water level is established.

For discharges other than the 9 simulated discharges, the asociated water level is based on
linear interpolation. For example, if the WAQUA simulations show that at location L the water
level is equal to 10 m+NAP for a discharge of 16000 m3/s  and equal  to  a water  level  of  11
m+NAP for a discharge of 18000 m3/s, then the water level for a discharge of 17000 m3/s is
assumed to be equal to 10.5 m+NAP and the water level for a discharge of 16500 m3/s is
assumed to be equal to 10.25 m+NAP.

4.4.2.1 Water level corrections
The model of section 3.5.2.3 is used to compute local wind set-up. The resulting value is
added to the water level. Furthermore, an additional correction is added to take into account
the effect of various kinds of oscillations in the water level caused by wind (e.g. seiches).
These increments are not computed, but read from the input database.

4.4.2.2 Wave loads
In order to compute wave loads in the river system, the Brettschneider model of section
3.5.2.2 is applied.



154 of 259 Hydra Ring Scientific Documentation

1206006-004-ZWS-0001, 2 January 2013, draft

4.5 Load model for the tidal rivers

4.5.1 Distribution functions of random variables
In the load model of the tidal river system, the following random variables are relevant:

 River discharge
 Wind (speed and direction)
 Sea water level
 Functioning of the barrier and water level predictions for the barrier

4.5.1.1 River discharge
See section 4.4.1.1

4.5.1.2 Sea water level at Maasmond (Hoek van Holland)
Location Maasmond is the downstream boundary for the (tidal) river area. The sea water level
statistics at location Maasmond are described by a conditional Weibull distribution function
(see section 6.13). The parameters of this distribution function are shown in Table 4.6. The
report of RIKZ [2006] describes these statistics. The parameters are given per wind direction,
showing the dependency between sea water level and wind direction. The time scale for
which these parameters have been derived is the tidal scale.

Table 4.6 Parameters of the conditional Weibull distribution for sea water levels at location Maasmond/Hoek van
Holland. The associated time scale is a tidal period.

Wind Direction
N 1.6208 6.4508E-02 7.8380E-01 8.6598E-02

NNE 1.4537 7.9793E-02 5.0180E-01 1.9821E-03

NE 1.4357 7.8015E-02 4.9832E-01 1.8556E-03

ENE 1.4289 7.2644E-02 4.9798E-01 1.8431E-03

E 1.4328 7.8260E-02 4.9808E-01 1.8467E-03

EZE 1.4618 8.2783E-02 4.9740E-01 1.8226E-03

ZE 1.4703 7.1444E-02 4.9732E-01 1.8192E-03

ZZE 1.4526 6.4981E-02 4.9636E-01 1.7855E-03

Z 1.4365 5.9367E-02 4.9563E-01 1.7601E-03

ZZW 1.1679 6.7515E-01 5.0593E-01 2.1403E-03

ZW 1.3383 7.8215E-01 8.4245E-01 5.8747E-02

WZW 1.3006 1.3774E+00 8.3113E-01 7.5904E-02

W 1.4478 8.2036E-01 7.8752E-01 8.1759E-02

WNW 1.4260 9.1612E-01 7.7652E-01 9.0158E-02

NW 1.2602 8.9691E-01 7.3640E-01 9.0069E-02

NNW 2.1220 2.1788E-02 7.5288E-01 8.9100E-02
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4.5.1.3 Wind
A modified Gumbel distribution function is applied to describe to describe the wind speed, see
section 6.14 for a generic description of this function. The modified Gumbel distribution is fully
determined by a quadratic polynominal function Kr and its parameters a, b and c (see Table
4.8 and Table 4.9). Furthermore, the modified Gumbel is truncated with a factor d=2%, see
section 6.15 for truncation of the Gumbel distribution function.

For various conditions, the frequency of exceedance of the wind speed, as derived from the
data, is multiplied with a so-called “Volker factor”, which is equal to 0.5. This factor is applied
to take into account the fact that the peak of the storm surge can coincide with low tide and
therefore may not lead to flood risk in the river system. The Volker factor is only applied if
each of the following three conditions are met:

 The considered wind direction is a northerly or westerly wind direction;
 The considered failure mechanism is either overtopping, overflow, uplift, piping or

stability; and;
 The considered location is in the tidal river area.

Table 4.7 shows the probability of occurrence for each wind direction sector for two stations:
Schiphol and Deelen. Table 4.8 and Table 4.9 present the modified Gumbel parameters of
these same locations (see e.g. Volker, 1987, . For station Schiphol, the parameters are
shown for the cases with Volker factor (left) and without (right) Volkerfactor. For station
Deelen, there is no such distinction because the statistics of this station are applied in the
upper river area only.

Table 4.7 Probability of occurrence for each wind direction sector
Wind

Direction

Schiphol Deelen

N 4.714E-02 1.751E-02
NNE 4.524E-02 2.531E-02
NE 5.573E-02 4.682E-02

ENE 6.442E-02 6.097E-02
E 5.753E-02 6.581E-02

EZE 4.145E-02 6.264E-02
ZE 4.444E-02 6.230E-02

ZZE 5.822E-02 5.856E-02
Z 7.450E-02 7.326E-02

ZZW 9.068E-02 1.157E-01
ZW 9.598E-02 1.321E-01

WZW 9.088E-02 1.115E-01
W 7.590E-02 6.369E-02

WNW 5.753E-02 4.322E-02
NW 5.083E-02 3.523E-02

NNW 4.954E-02 2.530E-02

Table 4.8 Parameters for the quadratic function Kr(u) for location Schiphol (Thonus et al, 2003)
With Volkerfactor Without Volkerfactor
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Wind

Direction

a

[s2/m2]

b

[s/m]

c

[-]

a

[s2/m2]

b

[s/m]

c

[-]

N 7.292E-04 2.536E-01 -6.351E-01 1.989E-02 7.763E-02 -8.213E-01

NNE 1.960E-02 1.654E-01 -1.461E+00 1.960E-02 1.654E-01 -1.461E+00

NE 2.888E-02 0.000E+00 -1.248E+00 2.888E-02 0.000E+00 -1.248E+00

ENE 2.889E-02 0.000E+00 -1.282E+00 2.889E-02 0.000E+00 -1.282E+00

E 2.895E-02 2.724E-02 -1.058E+00 2.895E-02 2.724E-02 -1.058E+00

EZE 2.802E-02 1.013E-01 -1.160E+00 2.801E-02 1.013E-01 -1.160E+00

ZE 2.935E-02 6.514E-02 -1.168E+00 2.935E-02 6.515E-02 -1.168E+00

ZZE 1.969E-02 1.547E-01 -1.464E+00 1.969E-02 1.547E-01 -1.464E+00

Z 2.241E-02 0.000E+00 -8.438E-01 2.241E-02 0.000E+00 -8.438E-01

ZZW 1.099E-02 1.475E-01 -1.673E+00 1.099E-02 1.475E-01 -1.673E+00

ZW 5.896E-04 3.107E-01 -1.786E+0 8.264E-03 1.711E-01 -1.980E+00

WZW 1.143E-03 2.978E-01 -1.591E+0 6.746E-03 1.970E-01 -2.042E+00

W 9.162E-04 2.017E-01 -9.367E-01 5.186E-03 2.235E-01 -2.088E+00

WNW 2.413E-03 2.002E-01 -7.523E-01 5.497E-03 2.244E-01 -1.959E+00

NW 3.632E-03 2.223E-01 -4.522E-01 5.192E-03 2.613E-01 -2.008E+00

NNW 3.486E-03 2.522E-01 -5.565E-01 9.558E-03 2.162E-01 -1.637E+00

Table 4.9 Parameters for the quadratic function Kr(u) for location Deelen (Thonus et al, 2003)

Wind

Direction

a

[s2/m2]

b

[s/m]

c

[-]

N 2.069E-02 0.0E+00 -1.000E-01

NNE 1.865E-02 1.804E-01 -1.365E+00

NE 2.826E-02 3.969E-02 -1.057E+00

ENE 2.747E-02 6.599E-02 -1.235E+00

E 3.202E-02 0.000E+00 -6.885E-01

EZE 3.304E-02 3.591E-02 -6.322E-01

ZE 2.762E-02 1.668E-01 -1.297E+00

ZZE 1.735E-02 2.340E-01 -1.636E+00

Z 1.956E-02 1.031E-01 -1.311E+00

ZZW 7.678E-03 2.487E-01 -1.795E+00

ZW 4.413E-03 3.058E-01 -2.235E+00

WZW 3.836E-03 2.877E-01 -2.151E+00

W 2.752E-03 2.779E-01 -1.970E+00

WNW 2.929E-03 2.664E-01 -1.594E+00

NW 2.638E-03 2.923E-01 -1.500E+00

NNW 6.784E-03 2.377E-01 -1.105E+00

4.5.1.4 Correlation between wind and sea water level
High sea water levels in the North Sea are caused by combinations of high tide and high
surge. In the North Sea, potential variations in the surge exceed the potential variations in the
tidal levels, which means the surge is the dominant cause of high water levels. High surges in
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the North Sea are caused by high wind speeds in combination with northerly or westerly
directions. Therefore, the mutual correlation between wind (speed and direction) and sea
water level needs to be taken into account for these wind directions. A case-specific
correlation model is applied to describe the correlation between these two variables, as will
be described below. The model is often referred to as the ‘Volkermodel’.

Even though the wind causes high sea water levels, the statistical relation is decribed by
taking the sea water level as the independent variable and the wind speed as the dependend
variable. Thisn means that for the sea water, the statistical distribution function of section
4.5.1.2 is used. Subsequently the wind speed, X2, is computed as a function of sea water
level, X1, plus an additional random component. The form of the conditional probability
distribution of X2 is as follws:

2 1

1
| 2 1

( ) /1| , exp exp
1

r r r r
X X

r

K u x A B
F x x r

d M
(3.2)

Where:
r = index for wind direction sectors
A, B, M, = parameters, see Table 4.10.
K = quadratic function with parameters a, b and c (see Table 4.8 and Table 4.9)
d = fraction of the upper tail of the distribution that is truncated (d=0.02)

Note that parameters A, B, M and  depend on the wind direction and are only given for
westerly and north-westerly wind directions. For easterly wind directions there is no
correlation between sea water level and wind speed, so for those directions the wind speed is
derived from the univariate distribution function as described in section 4.5.1.3. This can also
be realized by taking parameters A, B, M and  according to the values in the last row of
Table 4.10.

Table 4.10 Parameters Parameters of the Volker correlation function for westerly wind directions.
Wind Direction

(degrees)

Ar

(m)

Br

(m)

r

[-]

Mr

[-]

N 0.873 0.236 0.356 0.67

ZW 1.227 0.122 0.506 1.00

WZW 1.230 0.169 0.605 1.00

W 1.224 0.228 0.477 0.67

WNW 1.195 0.262 0.613 0.67

NW 0.887 0.326 0.768 0.67

NNW 0.904 0.292 0.677 0.67

other 0 1 0 1

The conditional distribution in equation (3.2) gives the non-exceedance probability of the wind
speed, X2, given the realization of X1 (water level) and the wind direction r, and is in fact the
correlation model. In the original description of the correlation model [Volker 1987], the values
Kr(x2) were constants, chosen discretely per value of wind speed and wind direction, such
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that the marginal statistics (computed by taking the integral over the water level) agree with
the independently computed marginal distribution of the wind speed. Since then, a 2nd degree
polynomial has been fit to the Kr(x2) values as a function of x2. The relationship is expressed
formally as follows:

2
2 2 2r r r rK x a x b x c (3.3)

To compute the (correlated) value of the wind speed, the inverse of equation (3.3) needs to
be calculated. Note that rearrangement of equation leads to:

2 1( ) ln ln 1rK x x A B M p d , (3.4)

where p is the non-exceedance probability of the independent part of variable X2,  which  is
computed as:

2p u , (3.5)

Where  is the standard normal distribution function and u2 is the realization of standard
normal variable U2, that represents the wind speed (see section 2.2.3 on the manner in which
Hydra-Ring uses standard normally distributed variables to represent “real-world” variables).

Substituting the expression for Kr(x2), given in equation (3.4), into equation (3.5) and solving
for x2 using the quadratic formula (see section 6.14 for a detailed explanation of this solution)
gives the following result::

2
2

2
2

4 ' , 4 ' 0
2

, 4 ' 0
2

b b ac b ac
ax

b b ac
a

(3.6)

where a and b are parameters of the polynomial given in Table 4.8, and c’ is given as follows:

1' ln ln 1c c x A B M p d (3.7)

where c is the parameter of the polynomial given in Table 4.8. The final step is to convert the
x1 and x2 values to (correlated) standard normally distributed u-values, to complete the
generic procedure of correlation models in Hydra-Ring as described in section 3.4.2.1. This is
done as follows:

1

1
1, 1cor xu F x (3.8)

2

1
2, 2cor xu F x (3.9)

The distribution functions Fx1 and Fx2 are the marginal distribution of the water level and the
marginal distribution function of the wind, respectively (see sections 4.5.1.2 and 4.5.1.3).
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The text above describes the currenmt implementation of the Volker model in Hydra-Ring.
Recent analysis showed that this model can be implemented in a more straightforward
manner, redcing the number of parameters and making it more transparent. Details are
described in [Diermanse en Geerse, 2011] en [Geerse, 2011b]. This alternative
implementation is a candidate for future adapatations to Hydra-Ring.

4.5.1.5 Correlation between Rhine and Meuse discharge
In the tidal area, downstream of the Rhine and Meuse branhes, the water levels are
influenced by both Rhine and Meuse discharges. For these locations, a 100% correlation
between Rhine and Meuse discharges is assumed, an assumption that may lead to small
overestimations of water levels. The correlation is incorporated in the database with
hydrodynamic model results and therefore does not need to be taken into account in the
statistical distribution functions. The concept is straightforward: each location in the tidal area
is either labeled “Rhine-dominant” or “Meuse dominant”. For a Rhine dominant location, the
statistics of the river Rhine at Lobith are derived and this discharge is used to find the
corresponding water level in the hydrodynamic database. This water level is based on a
simulation in which a discharge of the Meuse river was assumed, based on a deterministic
relation with the Rhine discharge (hence: 100% correlation). For Meuse dominant locations a
different database is constructed in which the Rhine discharge was taken as a deterministic
function of the Meuse discharge.

4.5.1.6 State and prediction error for the storm surge barrier
The method for incorporating the influence of storm surge barriers is described in section
2.5.4. The following input is required:

1 Description of the closure criterion
2 Probability distribution function for the prediction error (if the decision for opening or

closure of the barrier is based on water level predictions).
3 Probabilities of success/failure for closure and opening of the barrier upon request.

Furthermore, water levels in the river system as a function of the relevant random variables
(sea waterlevel, river discharge etc) need to be available for the situation of the open barrier
and for the situation of the closed barrier. This aspect will be described in section 4.5.2.

The Maeslant barrier will be closed is the predicted water level at location Rotterdam exceeds
3 m+NAP or if the water level at location Dordrecht exceeds 2.9 m+NAP. The Z-function for
the closure criterium can therefore described as follows:

3.0 2.9b R DZ h h (3.10)

In  which  hR is the water level at Rotterdam, hD is the water level at Dordrecht and  is  the
water level prediction error that is assumed to be the same for both locations. Prediction error
 is assumed to be normally distributed with mean -0.09 m and standard deviation 0.18 m.

This means that the predicted water level is on average 0.09 m lower than the actual water
level. Table 4.11 shows the probability of success/failure for opening and closure upon
request of the Maeslant barrier. As can be seen from this table, the probability that the barrier
is closed during an ‘event’ in which the closure criterion is not met (3rd scenario) is equal to 0.
This scenario can therefore be left out of the computations to save computation time.
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Table 4.11  Probability of success/failure for opening and closure upon request of the Maeslant barrier.
Scenario Description Value
1 P[closed | Zb<0] 0.99
2 P[open | Zb<0] 0.01
3 P[closed | Zb 0] 0
4 P[open | Zb 0] 1

4.5.2 Hydrodynamic models
The 1-dimensional Sobek model was used to compute water levels in the tidal river system
for different combinations of river discharge (Rhine and Meuse), sea water level, wind speed,
wind direction and barrier state (open or closed). The computed water levels are stored in
Microsoft Access databases. Two databases are distinguished: one for locations where the
Rhine is the dominant river and one for locations where the Meuse is the dominant river (see
section 4.4.1.3). In both cases, simulations where done for 9 combinations of Rhine and
Meuse discharges, but the selected combinations were mutually different. Results are
available approximately every kilometer along the river axis.

4.5.2.1 Water level corrections
The model of section 3.5.2.3 is used to compute local wind set-up. The resulting value is
added to the water level. Furthermore, an additional correction is added to take into account
the effect of various kinds of oscillations in the water level caused by wind (e.g. seiches).
These increments are not computed, but read from the input database.

4.5.2.2 Wave loads
In order to compute wave loads in the river system, the Brettschneider model of section
3.5.2.2 is applied.

4.6 Load model for the lakes

4.6.1 Distribution functions of random variables
In the load model of the lakes (IJssel Lake and Marker Lake), the following random variables
are relevant:

 Lake level (spatially averaged)
 Wind (speed and direction)

4.6.1.1 Lake level (spatially averaged)

Similar to river discharges, three types of statistics are used for the lake levels in Hydra-Ring

[1] Exceedance frequencies;
[2] Relationship between the peak value and peak duration of a hydrograph (see section

3.3.4) and
[3] A duration curve that describes the mean duration of an exceedance of lake level X (see

section 3.3.4).

These statistics are summarized in Table 4.12 (source: Geerse, 2006), Table 4.13 (source:
Geerse, 2008) and Table 4.14 (source: Diermanse et al, 20032);

2 In the formulas in section 4.2.2. of Diermanse et al [2003], parameters A and B have been incorrectly switched
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Table 4.12 – Lake level exceedance probabilities and peak durations for the IJssel Lake

IJssel Lake
Exceedance Probability Peak duration

X [m] probability [1 / (30 days)] X [m] Peak duration [hours]
-0.40 1.000 -0.4 720
0.05 0.166667 0.05 96
0.40 0.016667 1.8 96
1.07 1.667E-05 ------ ------

Table 4.13 – Lake level exceedance probabilities and peak durations for the Marker Lake

Marker Lake
Exceedance Probability Peak duration

X [m] probability [1 / (60 days)] X [m] Peak duration [hours]
-0.40 1.0 -0.40 1440
-0.22 0.3333 -0.22 96
1.00 1.014e-006 1.80 96

Table 4.14  Duration curve parameters for the IJssel and Marker Lake.

IJssel Lake Marker Lake
X [m] N(X) X [m] N(X)
-0.4 35.7 -0.4 29.0
0.084 9.5 0.613 0.9664
0.394 1.0 1.8 0.9664
1.8 1.0

4.6.1.2 Wind speed
For wind speed, the statistics of Schiphol are used, more specifically the option without Volker
factor (see section 4.5.1.3 and the last three columns of Table 4.8). Because 12 wind
directions are considered for the lakes, the statistics need to be provided per 30-degree wind
sector. These values are presented in Table 4.15

Table 4.15 Parameters for the quadratic function Kr(u) for location Schiphol, 12 wind directions. The second
column (P) shows the probability of occurrence per wind direction.

Without Volkerfactor

Wind

Direction

P a

[s2/m2]

b

[s/m]

c

[-]

N 4.53E-02 2.128E-02 2.460E-03 -8.315E-01

30 6.81E-02 2.744E-02 0.000E+00 -9.125E-01

60 8.12E-02 2.699E-02 0.000E+00 -9.982E-01

E 7.66E-02 2.831E-02 0.000E+00 -7.812E-01

120 6.95E-02 4.056E-02 -2.095E-01 1.481E-02

150 7.99E-02 3.344E-02 -9.576E-02 -6.279E-01

S 1.09E-01 2.122E-02 -1.124E-02 -7.794E-01

210 1.36E-01 1.326E-02 1.950E-02 -6.830E-01

240 1.35E-01 7.887E-03 1.169E-01 -1.003E+00
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Without Volkerfactor

Wind

Direction

P a

[s2/m2]

b

[s/m]

c

[-]

W 1.02E-01 7.570E-03 9.265E-02 -9.224E-01

300 5.93E-02 8.231E-03 8.070E-02 -7.676E-01

330 3.70E-02 1.164E-02 9.876E-02 -1.507E+00

4.6.2 Hydrodynamic models
The 2-dimensional hydrodynamic model WAQUA was used to derive water levels along the
lake for several combinations of wind direction, wind speed and the (spatially averaged) lake
level. For other combinations, the water level is estimated from 3-dimensional interpolation
between wind direction, wind speed and lake level.

A correction is added to the water level to take into account the effect of various kinds of
oscillations in the water level caused by wind (e.g. seiches). These increments are not
computed, but read from the input database.

The wave simulation model HISWA was used to derive wave characteristics (height, period
and direction) for the same combinations of wind direction, wind speed and lake level. Again,
for other combination 3-dimensional interpolation is used.

4.7 Load model for the lake delta

4.7.1 Distribution functions of random variables
In the load model of the lake delta, the following random variables are relevant:

 Lake level (spatially averaged)
 Wind (speed, duration and direction)
 River discharge
 Functioning of the barrier

4.7.1.1 Lake level (spatially averaged)
For the lake delta, only the lake level of the IJssel Lake is relevant. Statistics of the IJssel lake
level are described in section 4.6.1.1.

4.7.1.2 Wind
For wind speed, the statistics of Schiphol are used, more specifically the option without Volker
factor (see section 4.5.1.3 and the last three columns of Table 4.8). The potential variation in
wind duration is also taken into account. The storm graph (wind as a function of time) is
modelled by assuming a trapezium shape with a given base duration of 48 hours, and peak
duration of 2 hours.
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Figure 4.2 Schematisatation of the hydrograph of the wind speed.

4.7.1.3 River discharge
For river discharge, statistics of two locations are used in the load models of the lake delta:

1 The river IJssel ate Olst; and
2 The river Vecht at Dalfsen;

For each station, three types of statistics are used in Hydra-Ring:

[1] Exceedance frequencies of peak discharges;
[2] Relationship between the peak value and peak duration of a discharge wave (see section

3.3.4) and
[3] A duration curve that describes the mean duration of an exceedance of discharge Q (see

section 3.3.4).

Statistics on [1] and [2] are input as tabulated values, see Table 4.16 - Table 4.17 (source:
geerse, 2006) and Table 4.18 (source: Diermanse et al, 2003). For the duration curve, a third
degree polynomial function is used:

3 2( )N Q aQ bQ cQ d (3.11)

Where Q is the discharge and N is the average number of days that Q is exceeded during a
single exceedance event. The parameters a-d are displayed in Table 4.19.

Table 4.16 Parameters for the exceedance probability for Olst and Dalfsen (Hydra-Zoet version).

Exceedance Probability of peak discharge
Olst Dalfsen

X [m3/s] probability [1 / (30 days)] X [m3/s] probability [1 / (30 days)]
200 1.0 0 1.0
800 0.16666667 180 0.16666667
2720 1.3333E-04 550 1.3333E-04

Table 4.17 Parameters for the exceedance probability (PC-Ring version).
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Dalfsen
Exceedance Probability of peak discharge Peak duration

X [m3/s] probability [1 / (year)] X [m3/s] probability [1 / (year)]
0
180
550

Table 4.18 Peak durations (hours) for Olst and Dalfsen.

Olst Dalfsen
X [m3/s] Peak duration [hours] X [m3/s] Peak duration [hours]
200 720 0 720
800 24 180 48
4000 24 1000 48

Table 4.19 Duration curve parameters (FBC model)

Station Duration curve parameters
a b c d

X  1196 ------ ------ -1.33x10-2 2.45x101

X 1196 ------ ------ -2.16x10-3 1.12x101

4.7.1.4 Correlation between Lake and river discharge
High water levels in the IJssel Lake are the result of extended periods during which the
discharge of the IJssel river exceeds the outflow through the sluices of the Afsluitdijk into the
sea. As a result, peak discharges of the IJssel river and peak levels of the IJssel lake are
correlated. This is relevant for dikes along the IJssel delta, because increased lake levels will
lead to increased water levels in the river due to backwater effects.

The correlation is described by different correlation models. The PCR-model of section
3.4.2.3 can be used, in which parameter  is taken equal to 0.85 (based on the analysis of
Thonus and Diermanse, 2003). The preferred option is to use the HES-model of section
3.4.2.2, since that model provides more reliable results for the entire range of discharges,
whereas the PCR-model is only reliable for high (extreme) river discharges. In order to make
the HES model compatible with the PCR-model for extreme discharges, the asociated
distribution function, , for the independent part should be normally distributed with  taken
equal to 0.85. Parameter  should be taken equal to –(0.85)2/2 = -0.361, see section 3.4.2.3.
Note that in Geerse [2011], a value for =1.2 is proposed.

4.7.1.5 Correlation between IJssel and Vecht discharges
Some dike rings are bordered by both rivers (IJseel and Vecht), which means the correlation
between the river discharges influences the total failure probability of the dike ring. Therefore,
the correlation between IJssel and Vecht discharges is relevant. This correlation can be
described by either the PCR-model or the HES model. Nagaan welke -waarde in dit
correlatiemodel gebruikt wordt. In VNK1 wordt gesproken van 100% correlatie

4.7.1.6 Functioning of the storm surge barrier
The Ramspol sorm surge barrier has the purpose to protect the Lake delta during periods of
high water level on the IJssel Lake. The barrier will be closed if the local water level,
measured in the vicinity of the barrier, exceeds 0.50 m+NAP and at the same time the
direction of the flow is from west to east, i.e. water flowing from Lake IJssel into the Vecht
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delta. The barrier is re-opened as soon as the water level at the eastern side of the barrier
exceeds the water level at the western side.

As opposed to the storm surge barrier at Hoek van Holland (see section 2.5.4) water level
predictions and potential errors in water level predictions are no issue for the Ramspol barrier.
Similar to the the storm surge barrier at Hoek van Holland, the possibility that the barrier fails
to close upon request is taken into account. The failure probability is estimated at 1/1000 per
closure request. (Note that in Hydra-Zoet, this number is equal to 3.5/1000).

4.7.2 Hydrodynamic models
Model simulations have been carried out with the 2-dimensional hydrodynamic model
WAQUA, for different combinations of river discharge, IJssel Lake level, wind direction, wind
speed, wind duration and states of the storm surge barrier (open or close).

The model of section 3.5.2.3 is used to compute local wind set-up. The resulting value is
added to the water level. Furthermore, an additional correction is added to take into account
the effect of various kinds of oscillations in the water level caused by wind (e.g. seiches).
These increments are not computed, but read from the input database.

In order to compute wave loads in the river system, the Brettschneider model of section
3.5.2.2 is applied.

4.8 Load model for the coastal dikes

4.8.1 Distribution functions of random variables
In the load model of the coastal dikes, the following random variables are relevant:

 Wind (speed and direction)
 Sea water level
 Wave period

Each variable is considered a “slowly evolving variable” (see section 2.5.2). This means the
(peak) values of these variables in subsequent tidal periods are assumed to be independent.

4.8.1.1 Wind
Wind speed statistics are given per wind direction. They are described by the conditional
Weibull function (see section 6.13). Parameters of 4 stations are presented in Table 4.21.
Table 4.20 shows the representative stations for each coastal region.

Table 4.20 Selected wind stations per region

Region station
Wadden Sea east Terschelling West
Wadden Sea west Terschelling West
North Sea coast; north Texel, de Kooy
North Sea coast; middle Hoek van Holland
North Sea coast; south Hoek van Holland
Oosterschelde Vlissingen
Westerschelde Vlissingen
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Table 4.21 Weibull parameters for wind stations

sector
Hoek van Holland

0 14 0.015799 1.99 7.29
30 13 0.018632 2.11 6.84
60 14 0.012542 2.29 7.84
90 13 0.017007 2.31 7.71

120 13 0.016517 2.29 7.03
150 14 0.012449 2.4 8
180 16 0.011441 2.45 9.37
210 19 0.008507 2.4 11.1
240 20 0.008496 2.17 10.88
270 20 0.01101 1.98 10.09
300 18 0.015104 2.05 10.45
330 16 0.01789 2.05 8.66

Terschelling-west
0 16 0.016702 2.1 8.86

30 15 0.017765 2.11 7.79
60 16 0.012194 2.28 8.85
90 15 0.016629 2.35 8.97

120 15 0.016517 2.34 8.28
150 16 0.013654 2.48 9.48
180 18 0.012013 2.49 10.65
210 21 0.008737 2.47 12.4
240 21 0.011251 2.37 13.13
270 22 0.01101 2.16 12.19
300 20 0.015104 2.12 11.74
330 18 0.019168 2.18 10.4

Vlissingen
0 12 0.018327 1.83 5.98

30 12 0.016465 2.03 5.93
60 13 0.011462 2.19 6.81
90 12 0.015306 2.25 6.88

120 11 0.023174 2.38 6.77
150 12 0.016546 2.34 7.11
180 15 0.009782 2.38 8.52
210 18 0.008438 2.24 9.82
240 19 0.008794 2.03 9.73
270 19 0.010925 1.8 8.62
300 16 0.017738 1.91 9.38
330 14 0.017166 1.78 6.59

IJmuiden
0 14 0.022119 2.03 7.95

30 14 0.016032 2.08 7.08
60 14 0.017768 2.29 8.28
90 14 0.015117 2.27 7.96

120 13 0.025026 2.33 7.63
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sector
150 14 0.018875 2.42 8.53
180 17 0.010583 2.44 9.82
210 19 0.011496 2.43 11.73
240 20 0.011022 2.23 11.74
270 20 0.013833 2.04 10.94
300 18 0.018977 2.06 11.01
330 17 0.017038 2.07 9.21

4.8.1.2 Sea water level
Sea water level statistics are given per wind direction. They are described by the conditional
Weibull function (see section 6.13). Parameters of 12 stations are presented in Table 4.22.
For each region, statistics of a subset of these twelve stations is used to describe the sea
water level statistics for each dike section in the region. For this purpose, a spatial
interpolation routine is used that is described in section 4.8.2.

Table 4.22 Weibull parameters for sea water level stations

sector
Delfzijl

0 2.47 0.0065 1.59 0.8989
30 2.47 0.000087 1.51 0.3875
60 2.47 0.00007 1.51 0.3875
90 2.47 0.000076 1.51 0.3875

120 2.47 0.0001 1.51 0.3875
150 2.47 0.00008 1.51 0.3875
180 2.47 0.000057 1.51 0.3875
210 2.47 0.000345 1.52 0.459
240 2.47 0.006269 1.48 0.7251
270 2.47 0.039804 1.87 1.4973
300 2.47 0.061501 2.12 1.9565
330 2.47 0.031477 1.9 1.5905

Den Oever
0 1.88 0.004198 1.65 0.9908

30 1.88 0.00013 1.38 0.2881
60 1.88 0.000105 1.38 0.2881
90 1.88 0.000113 1.38 0.2881

120 1.88 0.00015 1.38 0.2881
150 1.88 0.00012 1.38 0.2881
180 1.88 0.000086 1.38 0.2881
210 1.88 0.000161 1.28 0.3105
240 1.88 0.006383 1.49 0.7069
270 1.88 0.039042 1.9 1.2644
300 1.88 0.049572 1.97 1.4011
330 1.88 0.024918 2.12 1.6529

Huibertgat
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sector
0 1.87 0.00325 1.03 0.1852

30 1.87 0.00026 1.2 0.1217
60 1.87 0.000209 1.2 0.1217
90 1.87 0.000227 1.2 0.1217

120 1.87 0.0003 1.2 0.1217
150 1.87 0.000241 1.2 0.1217
180 1.87 0.000172 1.2 0.1217
210 1.87 0.000621 1.17 0.1939
240 1.87 0.016877 1.23 0.4342
270 1.87 0.061286 1.31 0.5793
300 1.87 0.074785 1.31 0.5894
330 1.87 0.034289 1.28 0.5579

Den Helder
0 1.61 0.002167 1.48 0.7068

30 1.61 0.000043 2.58 0.4276
60 1.61 0.000035 2.58 0.4276
90 1.61 0.000038 2.58 0.4276

120 1.61 0.00005 2.58 0.4276
150 1.61 0.00004 2.58 0.4276
180 1.61 0.000029 2.58 0.4276
210 1.61 0.000414 1.54 0.3277
240 1.61 0.009116 1.39 0.4665
270 1.61 0.038646 1.65 0.8849
300 1.61 0.04051 1.8 1.1206
330 1.61 0.015845 1.83 1.2168

Harlingen
0 2.09 0.004379 1.73 1.023

30 2.09 0.00013 3.15 0.8338
60 2.09 0.000105 3.15 0.8338
90 2.09 0.000113 3.15 0.8338

120 2.09 0.00015 3.15 0.8338
150 2.09 0.00012 3.15 0.8338
180 2.09 0.000086 3.15 0.8338
210 2.09 0.000506 1.35 0.2546
240 2.09 0.01504 1.8 1.0739
270 2.09 0.0649 2.17 1.5361
300 2.09 0.07188 2.28 1.6958
330 2.09 0.032542 2.33 1.7917

Hansweert
0 3.39 0.004649 1.15 0.337

30 3.39 0.00052 1.49 0.3207
60 3.39 0.000418 1.49 0.3207
90 3.39 0.000454 1.49 0.3207

120 3.39 0.000601 1.49 0.3207
150 3.39 0.000482 1.49 0.3207
180 3.39 0.000343 1.49 0.3207



1206006-004-ZWS-0001, 2 January 2013, draft

Hydra Ring Scientific Documentation 169 of 259

sector
210 3.39 0.002368 1.24 0.3416
240 3.39 0.014535 1.2 0.3704
270 3.39 0.033847 1.2 0.4626
300 3.39 0.044421 1.16 0.5054
330 3.39 0.024918 1.04 0.3293

Hoek van Holland
0 1.97 0.015935 0.8 0.0944

30 1.97 0.00078 1.07 0.1203
60 1.97 0.000627 1.07 0.1203
90 1.97 0.00068 1.07 0.1203

120 1.97 0.000901 1.07 0.1203
150 1.97 0.000723 1.07 0.1203
180 1.97 0.000515 1.07 0.1203
210 1.97 0.001311 0.93 0.0848
240 1.97 0.015339 0.84 0.0716
270 1.97 0.071703 0.79 0.0815
300 1.97 0.085706 0.71 0.0654
330 1.97 0.055288 0.74 0.0913

Lauwersoog
0 2.12 0.006545 1.38 0.5488

30 2.12 0.00013 1.56 0.2196
60 2.12 0.000105 1.56 0.2196
90 2.12 0.000113 1.56 0.2196

120 2.12 0.00015 1.56 0.2196
150 2.12 0.00012 1.56 0.2196
180 2.12 0.000086 1.56 0.2196
210 2.12 0.000276 1.17 0.1527
240 2.12 0.010011 1.45 0.6257
270 2.12 0.059028 1.84 1.2438
300 2.12 0.088611 1.92 1.3652
330 2.12 0.048856 1.88 1.3309

OS11
0 2.27 0.013903 1.14 0.332

30 2.27 0.001387 1.22 0.2071
60 2.27 0.001115 1.22 0.2071
90 2.27 0.001209 1.22 0.2071

120 2.27 0.001602 1.22 0.2071
150 2.27 0.001285 1.22 0.2071
180 2.27 0.000915 1.22 0.2071
210 2.27 0.002782 1.13 0.2127
240 2.27 0.019334 1.15 0.2709
270 2.27 0.065916 1.13 0.3329
300 2.27 0.082918 1.15 0.4112
330 2.27 0.051113 1.17 0.4555

Terschelling-west
0 1.9 0.002302 1.75 0.932



170 of 259 Hydra Ring Scientific Documentation

1206006-004-ZWS-0001, 2 January 2013, draft

sector
30 1.9 0.00026 1.51 0.2695
60 1.9 0.000209 1.51 0.2695
90 1.9 0.000227 1.51 0.2695

120 1.9 0.0003 1.51 0.2695
150 1.9 0.000241 1.51 0.2695
180 1.9 0.000172 1.51 0.2695
210 1.9 0.000644 1.48 0.2834
240 1.9 0.0093 1.84 0.8973
270 1.9 0.036501 2.3 1.4191
300 1.9 0.041478 2.47 1.6146
330 1.9 0.018486 2.8 1.9444

Vlissingen
0 2.97 0.006681 1.2 0.3362

30 2.97 0.001083 1.81 0.4769
60 2.97 0.000871 1.81 0.4769
90 2.97 0.000945 1.81 0.4769

120 2.97 0.001251 1.81 0.4769
150 2.97 0.001004 1.81 0.4769
180 2.97 0.000715 1.81 0.4769
210 2.97 0.002253 1.35 0.3349
240 2.97 0.012813 1.45 0.5152
270 2.97 0.03365 1.27 0.4699
300 2.97 0.044499 1.35 0.6581
330 2.97 0.02611 1.35 0.6742

IJmuiden
0 1.86 0.006681 0.95 0.1727

30 1.86 0.000607 1.05 0.1382
60 1.86 0.000488 1.05 0.1382
90 1.86 0.000529 1.05 0.1382

120 1.86 0.000701 1.05 0.1382
150 1.86 0.000562 1.05 0.1382
180 1.86 0.0004 1.05 0.1382
210 1.86 0.001334 1.01 0.1411
240 1.86 0.011802 0.97 0.1379
270 1.86 0.059452 0.87 0.1485
300 1.86 0.062237 0.78 0.1153
330 1.86 0.035098 0.81 0.1523

4.8.1.3 Correlation between wind and sea water level
High sea water levels in the North Sea are caused by combinations of high tide and high
surge. In the North Sea, potential variations in the surge exceed the potential variations in the
tidal levels, which means the surge is the dominant cause of high water levels. High surges in
the North Sea are caused by high wind speeds in combination with northerly or westerly
directions. Therefore, the mutual correlation between wind (speed and direction) and sea
water level needs to be taken into account for these wind directions.



1206006-004-ZWS-0001, 2 January 2013, draft

Hydra Ring Scientific Documentation 171 of 259

Similar to the tidal river load model, the wind is described as a function of the water level, i.e.
the water level is treated as the independent variable. The correlation is described by different
correlation models. The PCR-model of section 3.4.2.3 can be used, in which parameter  is
taken equal to the values, as shown in Table 4.23 (based on the analysis of Diermanse et al,
2003). The preferred option is to use the HES-model of section 3.4.2.2, since that model
provides more reliable results for the entire range of wind speeds, whereas the PCR-model is
only reliable for high (extreme) wind speeds and sea water levels. In order to make the HES
model compatible with the PCR-model for extreme sea water levels and wind speeds, the
asociated distribution function, , for the independent part should be normally distributed with

 taken equal to the values, as shown in Table 4.23. Parameter  should be taken equal to -
2/2 (see section 3.4.2.3).

Table 4.23 -values of the correlation model for wind and sea water level for the coastal regions and 6 wind
directions. For the other wind directions, there is no correlation between wind speed and water level. Values
of -99 indicate wind sectors for which no correlation was observed.

wind sector: 0 210 240 270 300 330
Wadden Sea east 0.94 -99 1.01 1.05 0.86 0.88
Wadden Sea west 1.56 0.58 1.18 1.21 1.05 0.97
North Sea coast; north 2.37 1.54 1.35 1.43 1.41 1.45
North Sea coast; middle 0.65 0.75 1.07 1.02 1.09 1.05
North Sea coast; south 0.65 0.75 1.07 1.02 1.09 1.05
Oosterschelde 1.23 2.52 1.5 0.65 1.29 1.41
Westerschelde 1.40 1.89 1.46 1.05 1.56 1.37

4.8.1.4 Wave period
For the three North sea regions, (north, middle and south) the wave period, Tm-1,0, is added as
an additional random variable. The statistics of this variable are described by a conditional
Weibull function (see section 6.13). Parameters of 3 stations are presented in Table 4.25.
Table 4.24 shows which stations are used for the three regions.

Table 4.24 Selected wave stations per region

Region station
North Sea coast; north ELD
North Sea coast; middle YM6
North Sea coast; south EUR

Table 4.25 Weibull parameters for wave period Tm-1,0, for three stations

sector
ELD

0 7.95 0.037991 2.63 5.29
30 7.95 0.013456 2.63 5.33
60 7.95 0.003325 2.63 4.11
90 7.95 0.000168 2.63 3.28

120 7.95 0.000063 2.63 3.65
150 7.95 0.00028 2.63 3.79
180 7.95 0.000869 2.63 3.37
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210 7.95 0.003926 2.63 3.72
240 7.95 0.012755 2.63 4.33
270 7.95 0.055066 2.63 4.74
300 7.95 0.091134 2.63 5.27
330 7.95 0.085726 2.63 5.30

EUR
0 7.23 0.052908 3.59 5.46

30 7.23 0.026785 3.59 5.25
60 7.23 0.007558 3.59 5.01
90 7.23 0.00118 3.59 4.46

120 7.23 0.000115 3.59 4.20
150 7.23 0.000222 3.59 4.23
180 7.23 0.002998 3.59 4.22
210 7.23 0.013288 3.59 4.50
240 7.23 0.021147 3.59 4.65
270 7.23 0.034765 3.59 4.64
300 7.23 0.061161 3.59 5.23
330 7.23 0.079766 3.59 5.45

YM6
0 7.77 0.03527 3.22 6.26

30 7.77 0.018052 3.22 6.05
60 7.77 0.002926 3.22 5.71
90 7.77 0.000199 3.22 4.33

120 7.77 0.000355 3.22 4.83
150 7.77 0.000548 3.22 4.70
180 7.77 0.001769 3.22 4.22
210 7.77 0.009079 3.22 4.60
240 7.77 0.019763 3.22 5.24
270 7.77 0.05363 3.22 5.41
300 7.77 0.076902 3.22 6.14
330 7.77 0.077629 3.22 6.33

4.8.2 Hydrodynamic models

4.8.2.1 Spatial interpolation of water levels
Section 4.8.1.2 decribed the statistical distribution functions of twelve water level stations
along the Dutch coast. In order to determine water levels statistics at each coastal dike,
spatial interpolation is applied on the statistics of the water level stations. Each coastal region
is divided into one or more subregions. Within each subregion, triangular linear interpolation
is applied between three selected water level stations. This means that the 2-dimensional
(hyper-)plane is derived that connects the water levels in the three stations. This plane then
automatically describes water levels in other locations.

The local water level in location L is derived according to the following procedure:

1 Starting point of the procedure is the standard normally distributed variable, uh, that
represents the water level, h. The value of uh is generated by the probabilistic method of
choice, e.g. FORM, Monte carlo or numerical integration (see section 2.3).
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2 Translate uh to water level h for the three selected stations, based on equal probability
of (non-)exceedance. The result is a realization of the water level in each station: h1, h2
and h3.

3 Apply triangular interpolation between the water levels in the three stations to determine
the water level at location L.

So, h1,  h2 and h3 are the water levels in the three stations with the same return period. The
return period corresponds to the value of uh.

In step 3 above, a mathematical description is derived for the plane that connects the water
levels in the 3 stations. The general mathematical expression for the plane is:

1 2 3h x yc c c (3.12)
In which:
h = water level
x, y = coördinates
c1, c2, c3 = coëfficiënts

The coëfficiënts c1, c2, c3 are derived from the coördinates and water levels of the stations:

1 2 3h x y ; 1..3i i ic c c i (3.13)

In which index i refers to the number of the station. Coëfficiënts c1,  c2,  c3 are derived as
follows:

31 2
1 2 3

1 2 3 2 1 3 3 1 2

1 1 2 3 2 1 3 3 1 2

2 1 2 3 2 1 3 3 1 2

3 1 2 3 3 2 2 1 3 3 1 3 1 2 2 1

; ; bb bc c c
a a a

a x y y x y y x y y

b h y y h y y h y y

b x h h x h h x h h

b x y h y h x y h y h x y h y h

(3.14)

This formulation provides the he coëfficiënts c1,  c2,  c3 that describe the plane according to
equation (3.13). Subsequently, the water level at any location L can be determined by
substitution of the x,y coordinates of location L in equation (3.13).

For each location L, three “nearby” stations are required to determine the water level with the
procedure above. For some regions, only two “real stations” are available in the procedure. In
that case a fictitional third station is defined, which has the exact same statistical features as
one of the other two stations, but is situated at a different location. Such a fictitional station is
used to force the orientation of the water level gradient in a certain direction (see the example
of the Westerschelde below).

The remainder of this section shows the selection of stations for each region. Note that this is
a pre-processing procedure for Hydra-Ring. For a predefined set of coastal locations (i.e. the
output locations of the wave model SWAN) the procedure is applied to determine which three
stations are used for the interpolation procedure. The ID of the three stations is stored in a
database that is input for Hydra-Ring.

Westerschelde
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For the Westerschelde estuary, two water level stations are available: Vlissingen and
Hansweert. The gradient of the water level in this estuary during periods of high storm surge
is from West/northwest to east/southeast (see Figure 4.3) with higher water levels in the
east/southeastern part of the estuary. To ensure that this orientation is replicated in the load
model, a third, fictitional, station is created. This fictitional station has the same statistics as
Vlissingen, but is placed 30 degrees northnortheast of Vlissingen. This means the water level
along the line in north-northeastern direction is constant and therefore the gradient of the
water level plane has a southeast-easterly direction. The distance of the fictitious station is
chosen arbitrarily 10 km from Vlissingen, but this choice has no effect on the results.

Figure 4.3 Water level gradient in the Westerschelde.

Table 4.26 Water level stations for which statistics are used in the procedure of the Westerschelde.
number station x-coordinate y-coordinate

1 Vlissingen 30480 385220

2 Hansweert 59050 384960

3 fictitious_Vlissingen 35480 393880
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Figure 4.4 The westerschelde and the three stations of Table 4.26

North Sea regions

Table 4.27 shows the water level stations that are used for the three North Sea regions
(North, Middle and South). Similar to the procedure of the Westerschelde, a fictitious station
is introduced to force the orientation of the water level gradient in a desired direction. This
station has the same statistical features as station IJmuiden.

The dike locations of the North Sea regions are divided in four subregions. For each
subregion, a different set of stations is used for the triangular interpolation method (see Table
4.28). Directly below Table 4.28, the recipe is given for identifying in which subregion a
certain location L is situated. The subdivision in subregions is visualized in Figure 4.6.

Table 4.27 Water level stations for which statistics are used in the procedure of the North Sea regions
number station x-coordinate y-coordinate

1 Vlissingen 30480 385220

2 OS 11 23013 407778

3 Hoek van Holland 67930 445000

4 IJmuiden 98430 497500

5 Fictitious_IJmuiden 108133 495081

6 Den Helder 111850 553230
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number station x-coordinate y-coordinate

7 Terschelling West 143870 597420

8 Den Oever 132030 549440

9 Harlingen 156480 576550

Table 4.28 Selected water level stations for subregions of the North Sea regions
subregion Station 1 Station 2 Station 3

I Den Oever Harlingen Terschelling West

II IJmuiden Den Helder fictitious_IJmuiden

III Hoek van Holland IJmuiden Den Helder

IV Vlissingen OS11 Hoek Van Holland

location Llocation L

north of line Den Oever - Den Helder? L is in subregion I

north of IJmuiden?

north of Hoek van Holland?

n

n

n

L is in subregion II

L is in subregion III

L is in subregion IV

y

y

y

Figure 4.5 Flow diagram for dividing locations along the North Sea coast in different subregions
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Figure 4.6 Four subregions for triangular interpolation of water levels in the North Sea regions. Station numbers
correspond to the numbers shown in Table 4.27.

Wadden Sea regions

Table 4.29 shows water level stations that are used for the two Wadden Sea regions (west
and east). Similar to the procedure of the Westerschelde and North Sea, two fictitious stations
are introduced to force the orientation of the water level gradient in a desired direction. These
stations have the same statistical features as station Den Helder.

The dike locations of the Wadden Sea regions are divided in six subregions. For each
subregion, a different set of stations is used for the triangular interpolation method (see Table
4.30). Directly below Table 4.28, the recipe is given for identifying in which subregion a
certain location L is situated. The subdivision in subregions is visualized in Figure 4.8.

Table 4.29 Water level stations for which statistics are used in the procedure of the Wadden Sea
number station x-coordinate y-coordinate

1 Den Helder 111850 553230

2 Den Oever 132030 549440

3 Harlingen 156480 576550

4 Lauwersoog 208850 602790

5 Delfzijl 258000 594430

6 Huibertgat 221990 621330
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number station x-coordinate y-coordinate

7 West Terschelling 143870 597420

Table 4.30 Selected water level stations for subregions of the Wadden Sea
Subregion Station 1 Station 2 Station 3

I Lauwersoog Delfzijl Huibertgat

II Huibertsgat Lauwersoog Terschelling West

III Harlingen Lauwersoog Terschelling West

IV Harlingen Den Oever Terschelling West

V Den Helder Den Helder Den Helder

VI Harlingen Den Oever Terschelling West

location Llocation L

east of line Lauwersoog - Huibertsgat? L is in subregion I

north of line Lauwersoog – Terschelling West?

east of line Harlingen - Terschelling West?

n

n

n

L is in subregion II

L is in subregion III

L is in subregion VI

east of line Den Oever - Terschelling West?

n

L is in subregion IV

West of Den Helder?

n

L is in subregion V

y

y

y

y

y

Figure 4.7 Flow diagram for dividing locations along the Wadden Sea in different subregions
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Figure 4.8 Six subregions for triangular interpolation of water levels in the Wadden Sea. Station numbers
correspond to the numbers shown in Table 4.29.

4.8.2.2 Water level corrections
With the triangular interpolation method of the previous section, water level h can be derived
for each location and for each frequency of exceedance, f. Suppose that for a given location
the normative frequency is equal to f*. The water level, h(f*), can then be considered as the
normative water level. However, the actual normative water level, H, is derived in a slightly
different way (see RIKZ, 2006) and can therefore be different from h(f*). The differences,
although small, are undesired for practical purposes. Therefore, it was decided to correct the
sea water levels as computed in the load model of Hydra-Ring.

Correction = H – h(f*)

The correction is added each time after the water level at the considered location L has been
determined from triangular interpolation. This correction guarantees that the computed water
level with exceedance frequency f* is equal to H. Note that the correction is also done for
frequencies other than f*, to ensure that function h(f) remain continuous.

The derivation of the corrections is preprocessing for Hydra-Ring and the results are stored in
input databases. Due to the complexity of the Oosterschelde model (see section 4.9) no such
corrections have been defined for this region.

4.8.2.3 Wave parameters
The wave simulation model SWAN was used to derive wave characteristics (height, period
and direction) near all dike sections for selected combinations of wind direction, wind speed
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and water level. For other combinations, 3-dimensional interpolation is used to determine the
associated derive wave characteristics at the dike sections. For the North Sea regions,
SWAN computations were executed for selected combinations of wind direction, wind speed,
water level and wave period. Consequently, for these regions 4-dimensional interpolation is
used to determine the associated derive wave characteristics at the dike sections.

4.9 Load model for the Oosterschelde
Most components of the Oosterschelde load model were already described in section 4.8.
However, the Oosterschelde differs from the other coastal areas due to the presense of a
storm surge barrier. The barrier closes when high water levels at sea are predicted, to
prevent high water levels in the estuary. The effect of the closure of the barrier on water
levels in the Oosterschelde complicates the description of hydraulic loads and therefore a
separate load model for this area is required.

Similar to the load models of the lake delta and the Rhine-Meuse delta, it is taken into
account that the barrier can fail to close due to e.g. mechanical failures or human errors.
Furthermore, it is also taken into account that predicted water levels, required to determine if
the barrier needs to be closed, contain uncertainties. The manner in which the closure of the
barrier influences water levels in the Oosterschelde is further influenced by additional
variables, such as the phase difference between the storm surge peak and the peak of the
tide and the storm surge duration.

4.9.1 Distribution functions of random variables
In the load model of the dikes along the Oosterschelde, the following random variables are
relevant:

 Wind (speed and direction)
 Sea water level
 functioning of the barrier

water level predictions for barrier
 phase tidal peak-surge peak
 storm surge duration

Each variable is considered a “slowly evolving variable” (see section 2.5.2). This means the
(peak) values of these variables in subsequent tidal periods are assumed to be independent.

4.9.1.1 Wind and sea water level
These variables and their distribution functions have been described in section 4.8.

4.9.1.2 Functioning of the barrier
Similar to the the storm surge barriers at Hoek van Holland and Ramspol, the possibility that
the Oosterschelde barrier fails to close according to procedure is taken into account. The
main difference with the other two barriers is that for the Oosterschelde there is a backup-
procedure that is assumed never to fail. However, water levels in the Oosterschelde will be
higher if the backup procedure is carried out, compared to the case in which the normal
procedure is carried out. Water levels for both situations are computed with the hydrodynamic
model IMPLIC (see section 4.9.2). The probability that the Oosterschelde barrier fails to close
according to procedure is estimated to be equal to 0.01.
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4.9.1.3 Water level predictions for the barrier
The barrier is closed if the predicted water level is higher than 3.00 m+NAP. Water level
predictions contain uncertainties that need to be taken into account by the probabilistic model.
This uncertainty is modelled by a normal distribution function with a mean of 0 m and a
standard deviation of 0.25 m.

4.9.1.4 Phase tidal peak-surge peak
The phase difference between the tidal peak and the surge peak is assumed to be uniformly
distributed between -6.208 hrs and +6.208 hrs (6.208 hrs = halve a tidal period).

4.9.1.5 Storm surge duration
The storm surge duration is assumed to be lognormally distributed with a mean of 54.3 hours
and a standard deviation of 18.8 hours.

4.9.2 Hydrodynamic models

4.9.2.1 Water levels
Model simulations were executed with the Hydrodynamic model IMPLIC to compute water
levels for a set of combinations of:

 Wind speed;
 Wind direction;
 Sea water level (seaward of the flood barrier);
 functioning of the barrier;
 phase tidal peak-surge peak; and
 storm surge duration.

The output of the model runs has been stored in the input databases of Hydra-Ring for the 9
locations as described in Table 4.31. For other combinations of the six random variables, 6-
dimensional interpolation is used to determine the associated water levels in the 9 locations.
Note that the seventh random variable, the error in the predicted water level, is not included in
the bullet list above. Realisations of this variable are simply added to the realizations of the
water level. The resulting water level, “corrected” for prediction uncertainties, is used as input
for the 6-dimensional interpolation procedure.

Table 4.31 Water level stations for which statistics are used in the procedure of the Oosterschelde
number name x-coordinate y-coordinate
1 ROOMPOT BUITEN 35133 404133
2 ROOMPOT BINNEN 39067 403000
3 BURGHSLUIS 44067 411533
4 WEMELDINGE 61667 393933
5 MAROLLE GAT 68333 386333
6 STAVENISSE 59533 402333
7 PHILIPSDAM WEST 69533 409933
8 COLIJNSPLAAT 50333 402867
9 ZEELANDBRUG NOORD 51000 405667

For other locations than the 9 mentioned in Table 4.31, the water level s determined by tri-
angular interpolation. For this purpose, the dike locations of the Oosterschelde are divided in
six subregions. For each subregion, a different set of stations is used for the triangular
interpolation method (see Table 4.32). Directly below Table 4.32, the recipe is given for
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identifying in which subregion a certain location L is situated. The subdivision in subregions is
visualized in Figure 4.10.

Table 4.32 Selected water level stations for subregions of the Oosterschelde
Subregion Station 1 Station 2 Station 3

I Roompot binnen Burghsluis Zeelandbrug noord

II Roompot binnen Colijnsplaat Zeelandbrug noord

III Wemeldinge Colijnsplaat Zeelandbrug noord

IV Wemeldinge Marollegat Stavenisse

V Stavenisse Philipsdam West Zeelandbrug noord

VI Wemeldinge Stavenisse Zeelandbrug noord

location Llocation L

north of line Roompot binnen - Zeelandbrug noord
and west of the line X = 5.15E4? L is in subregion I

west of line Zeelandbrug noord – Colijnsplaat?

south of line Zeelandbrug noord – Wemeldinge
and west of Wemeldinge?

n

n

n

L is in subregion II

L is in subregion III

L is in subregion VI

east of the line x=6E4 and south of the line Y=4E5?

n

L is in subregion IV

north of line Zeelandbrug Noord -Stavenisse?

n
L is in subregion V

y

y

y

y

y

Figure 4.9 Flow diagram for dividing locations along the Oosterschelde  in different subregions
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Figure 4.10 Six subregions for triangular interpolation of water levels in the Oosterschelde. Station numbers
correspond to the numbers shown in Table 4.31.

4.9.2.2 Waves
The wave simulation model SWAN was used to derive wave characteristics (height, period
and direction) near all dike sections for selected combinations of wind direction, wind speed
and water level. Note that the water level in this case refers to the water level on the “inward”
side of the Oosterschelde barrier, as computed with the IMPLIC model and subsequent 6-
dimensional interpolation procedure. For other combinations than the ones computed with
IMPLIC, 3-dimensional interpolation is used to determine the associated wave characteristics
at the dike sections.

4.10 Load model for the coastal dunes

4.10.1 Distribution functions of random variables
In the load model of the coastal dikes, the following random variables are relevant:

 Sea water level
 Waves (height and period)

The load model for dunes is different from the other load models because it only considers
omnidirectional year statistics. In other words: statisticical distribution functions are not
derived/applied separately per wind direction sector.

Each variable is considered a “slowly evolving variable” (see section 2.5.2). This means the
(peak) values of these variables in subsequent tidal periods are assumed to be independent.
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4.10.1.1 Sea water level
The statistics of this variable are described by a conditional Weibull function (see section
6.13). Parameters of six stations are presented in Table 4.33. Section 0 describes how
statistics of these six stations are translated to dune locations.

Table 4.33 Weibull parameters for sea water level for five stations

station
Vlissingen 2.97 3.907 1.04 0.2796
Hoek van Holland 1.95 7.237 0.57 0.0158
IJmuiden 1.85 5.341 0.63 0.0358
Den Helder 1.60 3.254 1.60 0.9001
Eierland 2.25 0.500 1.86 1.0995
Borkum 1.85 5.781 1.27 0.5350

4.10.1.2 Wave height
The wave height, Hs, has a probability distribution function that is conditional to the water
level. The expected value of Hs is formulated as follows:

dhifmbha
dhifmhdcbhahH e

s

;][
;][

(4.4)

where:
Hs = wave height [m]
h = water level [m+NAP]

= expected value (in statistical sense)
a-e = parameters

a, b, c, d and e are parameters that differ from location to location (see Table 4.34).

Table 4.34 Parameters of equation (4.4) for five locdations

Vlissingen
Hoek van
Holland IJmuiden Den Helder Eierland Borkum

a 2.40 4.35 5.88 9.43 12.19 10.13
b 0.35 0.6 0.6 0.6 0.6 0.6
c 0.0008 0.0008 0.0254 0.68 1.23 0.57
d 7 7 7 7 7 7
e 4.67 4.67 2.77 1.26 1.14 1.58

Furthermore, it is assumed that the wave height is standard normally distributed with a mean
according to eq. (4.4) and a standard deviation of (Hs) = 0,6 m. This standard deviation of
0,6 m is assumed to be valid for all locations.

Figure 4.11 shows the relation between water level and expected wave height for the six
locations.
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Figure 4.11 Relation between water level and (expected) wave height at 5 locations

In Hydra-Ring, the correlation model as described above is programmed in a preprocessing
procedure for practical reasons. As with other correlation models (Figure 3.8), the starting
point of the preprocessing procedure is a set of realizations u1 and u2 of two mutually
independent standard normally distributed variables U1 and  U2.  Variables  U1 and  U2
represent two “real world” variables X1 and X2. In the example above, variable X1 is the water
level and X2 is the wave height. The first step in the correlation model is to translate u1 to x1,
using the inverse distribution function of variable X1:

1

1
1 1Xx F u (3.15)

The following step is to write the distribution function of variable X2 in terms of X1.

2 , 2 1 ,X corF x N G x (3.16)

where N represents the normal distribution, and where G(x1) is the mean value of the normal
distribution, and is a function of x1. Function G can be virtually any type of function, although
for reliability analysis it is preferable that G is a continuous function. The value of x2 is
computed from the inverse distribution function:

2

1
2 , 2X corx F u (3.17)

This model is used to correlate:
1. the wave height to the water level; and
2. the wave period to the wave height.

Exacte invulling met tabellen etc nog uitwerken



186 of 259 Hydra Ring Scientific Documentation

1206006-004-ZWS-0001, 2 January 2013, draft

4.10.1.3 Peak wave period
The peak wave period, Tp, is assumed to have a Gaussian distribution. The mean, , is
derived from the wave height, Hs, by a deterministic relation that is described by the tables
below. The standard deviation, , is equal to 1 s. The tables below show the relation between
wave height (Hs) and wave period (Tm-1,0 and Tp) for five different stations:

1 Borkum
2 Eierland
3 IJmuiden
4 Hoek van Holland
5 Vlissingen

For location, Den Helder, no such relation is directly available. The peak wave period for this
location is based on the peak wave period of IJmuiden and Eierland, using the following
relation:

Tp;Den Helder (Hs) = Tp;IJmuiden (Hs) + (1- )Tp;Eierland (Hs)

The value of  is equal to 0.35, based on the distances from Den Helder to IJmuiden and Den
Helder to Eierland respectively.

Table 4.35 Relations between wave height, Hs, on one hand and wave periods, Tm-1,0 and Tp, on the other hand for
location Borkum.

Hs Tm-1,0 Tp
2.80 7.41 8.59
3.82 8.58 9.97
4.69 9.59 11.18
5.46 10.47 12.28
6.18 11.28 13.29
6.85 12.03 14.23
7.49 12.73 15.11
8.09 13.38 15.96
8.68 14.01 16.76
9.24 14.60 17.53
9.79 15.17 18.27

10.32 15.71 18.99
10.84 16.24 19.69
11.35 16.75 20.36
11.85 17.24 21.01
12.34 17.72 21.65
12.81 18.19 22.28
13.28 18.64 22.88
13.75 19.08 23.48
14.20 19.52 24.06
14.65 19.94 24.63
15.09 20.35 25.19
15.53 20.76 25.74
15.96 21.15 26.28
16.38 21.54 26.82
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Hs Tm-1,0 Tp
16.80 21.93 27.34
17.22 22.30 27.85

Table 4.36 Relations between wave height, Hs, on one hand and wave periods, Tm-1,0 and Tp, on the other hand for
location ELD.

Hs Tm-1,0 Tp
3.08 7.22 8.22
3.72 7.79 8.87
4.24 8.28 9.43
4.86 8.85 10.10
5.46 9.41 10.76
6.04 9.96 11.42
6.62 10.50 12.07
7.19 11.02 12.72
7.75 11.54 13.35
8.31 12.04 13.98
8.85 12.53 14.59
9.39 13.02 15.20
9.93 13.49 15.80

10.46 13.95 16.39
10.99 14.41 16.97
11.51 14.86 17.55
12.03 15.30 18.12
12.55 15.73 18.68
13.06 16.16 19.23
13.57 16.58 19.78
14.07 16.99 20.32
14.57 17.40 20.85
15.07 17.80 21.38
15.57 18.19 21.90
16.06 18.59 22.42
16.55 18.97 22.93
17.04 19.35 23.44
17.52 19.73 23.94
18.01 20.10 24.44
18.49 20.47 24.93

Table 4.37 Relations between wave height, Hs, on one hand and wave periods, Tm-1,0 and Tp, on the other hand for
location Ijmuiden (IJM).

Hs Tm-1,0 Tp
3.20 7.11 8.02
4.25 8.33 9.37
5.00 9.21 10.38
5.61 9.91 11.20
6.13 10.50 11.89
6.57 11.00 12.50
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Hs Tm-1,0 Tp
6.98 11.44 13.03
7.34 11.84 13.52
7.67 12.20 13.96
7.98 12.53 14.37
8.26 12.84 14.74
8.53 13.12 15.09
8.78 13.39 15.43
9.02 13.63 15.74
9.25 13.87 16.03
9.47 14.09 16.31
9.67 14.30 16.58
9.87 14.51 16.83

10.06 14.70 17.07
10.24 14.88 17.31
10.42 15.06 17.53
10.59 15.23 17.75
10.75 15.39 17.96
10.91 15.55 18.16
11.07 15.70 18.35
11.22 15.85 18.54
11.36 16.00 18.73

Table 4.38 Relations between wave height, Hs, on one hand and wave periods, Tm-1,0 and Tp, on the other hand for
location Hoek van Holand (EUR).

Hs Tm-1,0 Tp
3.34 7.02 7.82
4.23 7.76 8.61
4.86 8.32 9.24
5.37 8.77 9.76
5.79 9.16 10.20
6.16 9.50 10.60
6.48 9.80 10.95
6.78 10.07 11.27
7.04 10.32 11.56
7.29 10.54 11.83
7.52 10.75 12.08
7.73 10.95 12.31
7.93 11.13 12.53
8.11 11.30 12.74
8.29 11.46 12.93
8.46 11.61 13.12
8.62 11.75 13.29
8.77 11.89 13.46
8.92 12.02 13.62
9.06 12.15 13.78
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Hs Tm-1,0 Tp
9.19 12.27 13.92
9.32 12.38 14.07
9.45 12.50 14.20
9.57 12.60 14.34
9.68 12.71 14.46
9.80 12.81 14.59

Table 4.39 Relations between wave height, Hs, on one hand and wave periods, Tm-1,0 and Tp, on the other hand for
location Vlissingen (SCW).

Hs Tm-1,0 Tp
1.55 5.79 6.57
2.72 6.86 7.77
3.31 7.56 8.58
3.73 8.09 9.22
4.07 8.53 9.76
4.36 8.90 10.22
4.62 9.22 10.62
4.85 9.52 10.99
5.06 9.78 11.32
5.25 10.03 11.63
5.43 10.25 11.92
5.60 10.46 12.18
5.76 10.66 12.44
5.91 10.85 12.67
6.05 11.02 12.90
6.19 11.19 13.12
6.32 11.35 13.32
6.44 11.50 13.52
6.56 11.65 13.71
6.68 11.79 13.89
6.79 11.93 14.07
6.90 12.06 14.24
7.01 12.18 14.40

4.10.2Hydrodynamic model

4.10.2.1 Interpolation procedure
The load model for the dunes is different from the other load models for multiple reasons.
One of them is that no hydrodynamic model is used to translate the available statistics of
water levels and waves to the nearshore locations at the flood defense. Instead, the water
level and wave statistics are used directly as input for a dune erosion model (to be described
in a later phase in chapter 6). First, however, spatial interpolation is applied to make the
statistics of the five stations available for each dune transect.

Based on the available statistics of the 6 locations the hydraulic loads for all locations along
the Dutch coast north of Hoek van Holland can be derived. Actually, first an additional, 7th,
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location is defined: “Steunpunt Waddenzee” (see Figure 4.12). This is done for interpolation
purposes, i.e. to prevent the line between the two northernmost locations, Eierland and
Borkum, to cross the Wadden Islands. The hydraulic loads of the “steunpunt” are derived
through application of the following relation:

Xsteunpunt = 0.57 XEierland + 0.43 XBorkum

Where X stands for water level, wave height and peak wave period. Table 4.40 and Figure
4.12 show the seven locations for which the hydraulic boundary conditions are available.

Table 4.40 Locations for which boundary conditions are available and their Parisian
coordinates.

nr locatie X Y
1 Vlissingen -7.797 380.645
2 Hoek van Holland 58.748 450.830
3 IJmuiden 79.249 501.800
4 Den Helder 98.372 549.340
5 Eierlandse Gat 106.514 587.985
6 Steunpunt Waddenzee 150.000 621.230
7 Borkum 221.990 621.330
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Figure 4.12 Locations for which boundary conditions are available. Numbers correspond with Table 4.40.

The seven locations (steunpunten) are connected by six straight lines in Figure 4.12 and,
again, in Figure 4.13. For each dune profile in the Netherlands, a line is drawn, perpendicular
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to the coast line (the coloured lines in Figure 4.13). The location, L, where such a
perpendicular line intersects with one of the five straight lines is determinative for the
interpolation procedure. The distance between L and the 2 closest “steunpunten” determines
the value of the multiplication factors that are used for the interpolation procedure.

Example: Suppose the line, perpendicular to the coast line at a location D, intersects at
location L with the line between Hoek van Holland (location 2 in Figure 4.13) and IJmuiden
(location 3 in Figure 4.13). Furthermore, suppose the distance from L to Hoek van Holland is
20 km and the distance from L to IJmuiden is 30 km. This means the relative distances are
0.4 (Hoek van Holland) and 0.6 (IJmuiden). The water level and wave characteristics at
location D are then derived as follows:

XD = 0.6 XHoek van Holland + 0.4 XIJmuiden

Where X stands for water level, wave height and peak wave period.
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Figure 4.13 Schematic view of the interpolation procedure.

4.10.2.2 Water level corrections
With the interpolatiin method of the previous section, water level h can be derived for each
location and for each frequency of exceedance, f. Suppose that for a given location the
normative frequency is equal to f*. The water level, h(f*), can then be considered as the
normative water level. However, the actual normative water level, H, is derived in a slightly
different way and can therefore be different from h(f*). The differences, although small, are
undesired for practical purposes. Therefore, it was decided to correct the sea water levels as
computed in the load model of Hydra-Ring. These corrections are applied in a similar manner
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as described in section 4.8.2.2. The derivation of the corrections is preprocessing for Hydra-
Ring and the results are stored in input databases.

4.11 Spatial correlations between load models of different regions
Some dike ring areas in The Netherlands are bordering different water systems. In order to
compute the probability of failure for these dike rings, multiple load models need to be
considered. Furthermore, correlations between random variables of different regions need to
be taken into account. For instance, the sea is experiencing high wind speeds, the tidal river
area is likely to experience high wind speeds as well. Table 4.41 shows the correlation
coeffecients in Hydra-Ring that are applied to model the statistical dependence between
variables of different regions in The Netherlands.

The computation of the combined failure probabilities of two dike sections along different
water systems are done in similar style as the computation for two dike sections along the
same water system, i.e. using the Hohenbichler method (see section 2.4.2). If a load variable
X is only used in water system 1 and not in water system 2, this simply means the -value of
variable X in system 2 is equal to 0 by definition.

Table 4.41 Correlations between random variables of different regions
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Water level @ Hoek van Holland 0.80 0.40 0.97
Wind speed @ Schiphol/Deelen |MM 0.40
Wind speed @ Schiphol/Deelen 0.90 0.97 0.40
Lake level – IJssel Lake 0.97
Water level @ Den Helder 0.40 0.40 0.40
Water level @ Vlissingen 0.97 0.97
Water level @ Harlingen 0.97 0.97
Water level @ Lauwersoog 0.97
Water level @ OS11 0.97
Wind speed @ de Kooy 0.40
Wind speed @ Terschelling West 0.40

Suppose there are two random (load) variables, X and Y, from two different regions, with
a mutual correlation coefficient . The value of  is obtained through the input correlation
matrix. The u-value of Y can be written as a function of the u-value of X:
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2 *1y x yu u u

In which uy* is independent of ux. The output of Hydra-Ring (i.e. the input of Combin)
will contain several -values for variable y, describing the contribution of variable Y in
the linearised Z-functions for various combinations of sections, submechanisms, layers
etc. Consider one such Z-function in which Y is involved:

2 2 ...y y n nZ u u u

u2…un represent the other variables that are relevant for the Z-function. Combining the
two equations above provides:

2 *
2 2

2 *
2 2

1 ...

1 ...

y x y n n

y x y y n n

Z u u u u

u u u u

So, the linearised Z-function is now a function of variables ux and uy
* instead of variable

uy. In terms of Hydra-Ring output, this means y is replaced by two -values, y1 and y2:

1y y

2
2 1y y

4.12 Combination

4.12.1 Stappen

transposeToRingStochasts
combineMainMechanismSections

o combineAlternatives
o combineLayers
o combineMechanisms

combinePresentationSections
o combineSections
o combineMainMechanisms

combineAreaMainMechanism
combineArea

4.12.2 Transpose to Ring stochasts
In the HydraRing calculation the stochastic variables are calculated for a specific alternative,
layer, section and mechanism. For this combination the section is belonging to only one
region. The dike ring may belong to more than one region. In that case the stochastic
variables should be transferred to one basis. This is done in the subroutine
transposeToRingStochasts.
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Hoe:
Zie 4.10 scientific documentation.
Zie PC-Ring en correlatie data per ring.
Dit wordt in PC-Ring verwerkt in InCor.f90.

Dit moet bij voorkeur voor heel Nederland. Dus een grote transformatie matrix.

OK, om te checken of ik dit goed begrijp zie andere bijlage.

Deze actie kan worden uitgevoerd na het inlezen van de data, of pas wanneer over
regiogrenzen wordt gestapt. Deze laatste optie is nauwkeuriger, maar lastiger uit te leggen en
te programmeren.

Meer in detail: De vertaalslag kan gedaan worden als eerste bewerking op de resultaten uit
het mechanisme programma. Alle resultaten van de combinaties zijn dan uitgedrukt in de
transposed variabelen.
Als alternatief kan men ook vertaalslag uitvoeren bij het oprollen over de ring als een regiem
grens wordt overschreden. De vertaalslag komt dan net voor het oprollen tot de ring/area.

4.12.3 Combine alternatives
Alternatives represent the different possible subsoil scenarios.

Input: The results of HydraRing calculations for:
Mechanism
Section
Layer
Alternative
Presentation section

Let op: De berekening in het mechanisme programma berekent voor een combinatie van mechanisme,
sectie, laag en alternatief. Hierbij wordt de doorsnede opgeschaald naar de sectielengte, Echter als een
sectie tot meerdere presentatie secties behoord, wordt ook uitvoer gegeven voor de verschillende
lengten binnen de afzonderlijke presentatiesecties.
In deze subroutine gaat het niet over het oprollen van de secties naar de presentatiesecties.

Procedure: Multiply the different alternatives with the probability of occurrence and combine them
("or") as not correlated.
Note: This procedure differs from PC-Ring, but is more accurate.

Output: The results of HydraRing calculations for:
Mechanism
Section
Layer
Presentation section (ook over gehele sectie)

4.12.4 Combine layers
Layers represent the different possible sub layers. For instance for revetments, the dike may be riveted
with grass, stones, asphalt, etc.
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Input: The results of HydraRing calculations for:
Mechanism
Section
Layer
Presentationsection

Procedure: Combine ("or") the different revetments. The different stochastic variables between the
different layers are fully correlated if they refer to the same natural variable.
Note: In the definition of stochastic variables account should be made with this assumption. So, e.g.
there should only be one variable “grain size diameter” if this variable is thought to be the same for all
layers. At the same time, e.g. the width of the revetment layer should be defined as separate variables if
they refer to different layers, otherwise they will be incorrectly fully correlated in the model.

Output: The results of HydraRing calculations for:
Mechanism
Section
Presentation section

4.12.5 Combine mechanisms
Mechanisms represent the different possible mechanisms which belong to one main mechanism.

Input: The results of HydraRing calculations for:
Mechanism
Section
Presentationsection

Procedure: Combine ("or") the different mechanisms. The different stochastic variables are fully
correlated if they refer to the same natural variable.
Note: In the definition of stochastic variables account should be made with this assumption.

Output: The results of HydraRing calculations for:
MainMechanism
Section
Presentationsection

4.12.6 combineSections
Some sections combined give the presentation section.

Input: The results of HydraRing calculations for:
MainMechanism
Section
Presentationsection

Procedure: Combine ("or") the different sections within a presentation section. The different stochastic
variables that refer to the same natural variable (e.g. grain size) are partially correlated, since they refer
to different locations. The partial correlation is equal to the residual correlation, Z, of the spatial
correlation model (see section 2.5.5 of the Scientific documentation). The partial correlation is the
same for each pair of sections, no matter if they are neighboring sections or more remote sections.
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Note: This procedure may be replaced/extended later with a procedure with a different length effect in
which correlation depends on the distance between sections. Such a procedure would be more
physically correct and opens doors for the use of smaller sections, i.e. smaller than the correlation
length of the Z-function. However, this will also lead to an increase of computation times. It needs to
be verified if this increase in computation time is acceptable and correct.

Output: The results of HydraRing calculations for:
MainMechanism
Presentationsection

4.12.7 combineMainMechanisms
Within a presentation section the combination of the main mechanisms give the probability of the
presentation section.

Input: The results of HydraRing calculations for:
MainMechanism
Presentationsection

Procedure: Combine ("or") the different main mechanisms. The different stochastic variables are
partially correlated.
Note: This procedure may be replaced/extended later with a procedure with a different length effect.
Different correlation dependent on the distance between sections.

Output: The results of HydraRing calculations for:
Presentationsection

The procedures above result in the failure probability of the presentation sections. Now this
can be combined to the dike ring (or more general: area).

4.12.8 combineAreaMainMechanism
The combination of the full length sections of a main mechanism gives the failure probability of the
area/dike ring due to a given main mechanism.

Input: The results of HydraRing calculations for:
MainMechanism
Section (full section length of main mechanism, so no presentation section!)

Procedure: Combine ("or") the different sections of the main mechanism. The different stochastic
variables are partially correlated.
Note: This procedure may be replaced/extended later with a procedure with a different length effect.
Different correlation dependent on the distance between sections.

Output: The results of HydraRing calculations for:
MainMechanism

4.12.9 combineArea
The results of the complete area/dike ring can now be calculated from the results for the
different presentation sections or the results for the different main mechanisms. The one with
the highest reliability index should be used.
For the correlation the partial correlation should be used.
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4.12.10 Consequences for Hydra-Ring
In order to apply the method as described above, some adaptations need to be made in the
part of Hydra-Ring that is executed prior to Combin. The main activities are:

[A] upscale results of representative cross sections to presentation sections. Theoretically, a
dike segment can be spread out over multiple presentation sections. In practice, however,
presentation segments will be at least the scale of the dike segments, which means one dike
segment is spread out over 2 presentation segments at most. The representative cross
section of a dike segment therefore needs to be upscaled to:

1. The dike section
2. The overlap of the dike section with the first presentation segment
3. The overlap of the dike section with the second presentation segment

Steps 2 and 3 are additional to the current version of Hydra-Ring.

[B] combine all (sub)sections of the presentation section to derive results for the entire
presentation section.

[C] store additional alpha-values (and corresponding betas). Values for all combinations of
Mechanms, Sections, Layers, Alternatives and Presentation Sections need to be stored.



198 of 259 Hydra Ring Scientific Documentation

1206006-004-ZWS-0001, 2 January 2013, draft

5 Failure mechanisms

5.1 Introduction
A flood defence system can fail due to different failure mechanisms. An overview of relevant
mechanisms for levees is shown in Figure 5.1.

Figure 5.1  Illustration of different failure mechanisms for dikes.

Failure due to a particular failure mechanism can sometimes depend on the occurrence of
more than one sub-mechanism. An example is failure due to piping (internal erosion of sand
underneath the levee or structure), which can only occur if heave (of the protecting cover
layer at the land side) first occurs, see Figure 5.2.

Figure 5.2 Example of the fault tree for failure mechanism heave and piping

Overflow Overtopping

Slope stability outwardsSlope stability inwards

Seepage face erosion

Liquefaction Revetment failure

Piping/Heave (internal erosion)

Failure due to heave
and piping

PipingHeave

AND
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The probability of sub-mechanism failure is predicted on the lowest level by cross sectional
models, where a cross section refers to a (transectional) cross section of a flood defence
segment. These models require input data, for example hydrodynamic data, the cross section
geometry, the revetment geometry, the subsoil geometry and the physical parameters of soil
and revetment.

This chapter describes the failure mechanisms that are programmed in Hydra-Ring. For each
mechanism, the formulas that describe them are presented and briefly explained in the
following sections:

 overflow/overtopping
 sliding of the inner slope
 heave & piping
 revetment erosion and subsequent internal erosion
 overflow/overtopping of hydraulic structures
 closing failure of hydraulic structures
 piping of hydraulic structures
 structural failure of hydraulic structures
 dune erosion

The models for each of the mechanisms are presented in the form of a limit state function,
which is useful for probabilistic computations. A limit state function is defined such that values
greater than zero indicate no failure, and values less than zero indicate failure. Together with
the statistical load models and local input data, failure probabilities can be computed for each
dike section and for each failure mechanism, and can subsequently be combined to
determine the failure probability of the dike ring (see Chapter 2 for details on the
combination).

5.2 Models of failure mechanisms in probabilistic failure computations

5.2.1 Introduction
In chapter 2 it was described that Hydra-Ring uses the following two-step procedure to
quantify the probability of failure of a dike ring:

1. quantification of the probability of all the individual components of the system, and
2. integration of the failure probabilities of the components to derive the failure probability of

the entire system (system analysis).

A single component in Hydra-Ring refers to a combination of one cross section, one failure
mechanism, one wind direction, one closure scenario and one relatively small (<1 day) time
interval during which load conditions are assumed to be constant.

5.3 Overtopping and Overflow
Overflow and overtopping are considered to be one of the main failure mechanisms. For this
mechanism, water passing over the crest of the dike either due to overtopping or overflow  is
the cause of erosion loading on the inside slope. In Hydra-Ring, water discharges due to
overflow are assumed to be relevant only in case of offshore wind and wave heights smaller
than 1 mm. Water discharges in other situations are assumed to occur due to wave
overtopping.
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In the following sections, the formulas to compute the failure mechanism overtopping and
overflow are presented. For background information on the derivation of these formulas see
[Technical Report Wave Run-up and Wave Overtopping at Dikes, TAW, 2002].

Table 5.1 gives an overall view of the steps that have to be followed to compute both failure
mechanisms.

Table 5.1  Overview of the general calculation procedure for overtopping and overflow
Calculation procedure Variables to

compute
(in order)

Section

Overtopping
1. Optional: Calculation of the critical overtopping discharge
(qc), if it is not direct input

Te  Vc  qc 5.3.6

2. Optional: Calculation of the wave height (Hs), wave period
(Ts) and peak period (Tp)   with  Bretschneider,  if  it  is  not
available from the hydraulic boundary conditions database

Hs  Ts  Tp 3.5.2.2

3. Calculation of the combined reduction factor ( ) f b s  5.3.4.6
4. Calculation of the overtopping discharge (qo) Rb Qb Sop qo 5.3.4.7
5. Calculation of the failure mechanism overtopping (Z) Z 5.3.2
Overflow
1. Optional: Calculation of the critical overflow discharge (qc),
if it is not direct input

Te  Vc  qc 5.3.6

5. Calculation of the failure mechanism overflow  (Z) Z 5.3.1
The meaning of the variables to be computed is explained in the sections to which is referred.

Table 5.5 and Table 5.6 give an overview of the input parameters for overtopping and
overflow.

Table 5.2  Overview of the variables to compute the failure mechanism overtopping
Description Unit

mqc Model factor critical discharge [-]
qc Critical discharge [m3/s]
mqo Model factor overtopping discharge [-]
qo Overtopping discharge [m3/s]
Pt Percentage of time that overtopping/overflow

takes place
[-]

Table 5.3 Overview of the variables to compute the failure mechanism overflow
Description Unit

h Outer water level [m+NAP]
hd Dike height [m]

hc Critical height difference [m]
qc Critical overtopping discharge [m3/s]
hB Outer bank height [m+NAP]
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5.3.1 Limit State Function Overflow
The overflow mechanism is considered in the presence of offshore wind and wave heights
with less than 1 mm. Figure 5.3 illustrates this mechanism.

Figure 5.3 Dike failure mechanism overflow

In this mechanism, failure occurs when the water level rises above the critical height of the
dike hkd. The limit state function of this mechanism given by:

Z = hkd - h (4.1)

where hkd is the critical height of the dike and h is the local water level. The critical height of
the dike hkd is the sum of the dike height hd and the critical height difference hc.

cdkd hhh (4.2)

The limit state function can be rewritten as:

hhhZ cd (4.3)

The critical height difference hc is a function of the critical overtopping discharge qc.
Assuming that overflow occurs, from the critical overtopping discharge qc (determined as in
section 5.3.6), the critical height difference hc can be computed as:

36,0 cc hgq 3
2

36,0 g
q

h c
c (4.4)

where g is the gravitational force and the limit state function can be expressed as,

h
g

q
hZ c

d 3
2

36,0
(4.5)

5.3.2 Limit State Function Overtopping

The overtopping failure mechanism occurs when at a certain location the amount of water, as
a result of waves and water level, is higher than the level that the dike crest and inner slope
can handle. The water discharge passing over the crest leads to erosion, which if not taken
care of on time, can cause a breach in the dike and flooding may occur.



202 of 259 Hydra Ring Scientific Documentation

1206006-004-ZWS-0001, 2 January 2013, draft

The limit state function that describes this failure mechanism is given by:

Z = mqc qc - mqo qo / Pt (4.6)

where qc is the critical discharge expressing the allowed discharge, qo is the actual occurring
overtopping discharge, mqc and mqo are the model factors describing the uncertainty of the
models for calculating qc and qo. The occurring discharge is divided by the percentage of the
time Pt that overtopping takes place which accounts for the wave periodicity. In the overflow
mechanism Pt is assumed to be one.

In the implementation of this mechanism, the geometry of the dike is taken into account, from
toe to toe. Hydra-Ring assumes that this geometry can consist of the following components:

 one toe
 one outer slope between the toe and the berm
 one berm
 one outer slope between the berm and the outer crest line
 one crest
 one inner slope

The available models for calculating the occurring and allowed overtopping discharge are the
following:

 Overtopping discharge as described in the manual by van der Meer with some adjustments
from the software PC-Overslag  [section 5.3.3]

 Formulas from Strickler/Manning to determine the speed of discharge at the inner slope ,
and CIRIA formulas to determine the strength of the grass revetment (the user can chose
other relations) [5.3.6]

5.3.3 Introduction to the overtopping discharge models

In Hydra-Ring, two methods are available to compute the overtopping discharge. Section
5.3.4 describes the approach presented in “Technical report wave run-up and wave
overtopping at dikes” [REF] of the technical advisory committee on flood defence in The
Netherlands. This method is refered to as PC-Overslag (the program that implemented this
approach). Section 5.3.5 describes the slightly different implementation in the program PC-
Ring  [REF], where some simplifications to the standard design have been made. Both
implementations share several calculation steps. The description of the PC-Ring approach
will therefore be limited to the part that is different.

Both methods base their computation on differentiating between two scenarios: Overtopping
discharge for breaking waves and overtopping discharge for non-braking waves. In the first
scenario, overtopping increases by increasing the so-called breaker parameter op ( op b <
2). The second scenario is developed for the maximum level that can be achieved with non-
breaking waves ( op b >  2). The overtopping discharge is assumed to be the minimum
between these two cases. In the following subsections the computation of the reduction factor

b is and the breaker parameter is explained.
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5.3.4 Overtopping: PC-overslag approach

In the box below, the computation steps used in PC-overslag are mentioned as well as the
sections where these steps are explained. The whole computation starts by initializing the
variables  Hm0 and Tm-1,0 at the toe of the dike (as a pre-processing step).

1. Calculate influence factor for angle of wave attack ,z for wave run-up  section 5.3.4.2
2. Adjust wave conditions Hm0, Tm-1,0 if  > 80 degrees  section 5.3.4.2
3. Iterate until 2% wave run-up reaches an equilibrium

a. Calculate average slope, tan section 5.3.4.2
b. Calculate z2%,smooth (smooth: for b = 1 and f = 1) section 5.3.4.1
c. Calculate influence factor for roughness on slope f section 5.3.4.5
d. Calculate z2%,rough (rough: for b = 1)  section 5.3.4.1
e. Calculate influence factor for berms b section 5.3.4.4
f. Calculate 2% wave run-up  section 5.3.4.1

4. Calculate influence factor for roughness on slope f section 5.3.4.5
5. Calculate influence factor for angle of wave attack  for wave overtopping  section 5.3.4.2
6. Adjust influence factors in case b f  < 0.4, so that b f  = 0.4 section 5.3.4.6
7. Calculate wave overtopping with the computed b and f section 5.3.4.7

5.3.4.1 Computation of the z2% wave run-up level

The general formulas for calculating the z2% wave run-up level are:

2% 0 1 0m b fz H frun-up (4.7)

with a maximum of:

2% 0
0

1.6
4.3m fz H (4.8)

where:
Hm0 significant wave height

b influence factor for a berm
f influence factor for roughness components

influence factor for angle of wave attack
o breaker parameter

The breaker parameter is computed with the following fomula:

o
op

tan
=

S
repr

, (4.9)

in which Sop represents the wave steepness:
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2

2 s
op

p

H
S

g T
, (4.10)

A graphical representation of these formulas is shown in Figure 5.4. The first formula applies
to situations with low breaker parameters (approx. o < 1.8, in figure tagged with ‘formula 3a’),
the second formula is valid for higher values of o.

Figure 5.4  Wave run-up as function of break parameter

Within Hydra-Ring both formulas are evaluated, where the final wave run-up level is
determined by calculating the minimum wave run-up level of both formulas.

The value for the z2% wave run-up level is calculated by means of iteration. The iteration ends
and produces an answer if the following condition is met:

51

1

5 10
( ) / 2

i i

i i

z z
z z (4.11)

where:
zi z2% wave run-up level of iteration step i
zi+1 z2% wave run-up level of iteration step i+1.

The value for the average slope angle depends on the z2% wave run-up level, which is
calculated by an iteration loop. In order to calculate the average slope in the first iteration
step, an initial value for the z2% is needed. As initial value within Hydra-Ring z2% = 1.5Hm0 is
used.
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5.3.4.2 Calculate influence factor for angle of wave attack
Influence factors or correction factors, are quantities that affect the final overtopping
discharge. In this case, the angle of incidence of wave attack , defined as the angle between
the direction of wave propagation and the normal to the dike axis , has a direct influence in
the final computation. On average, the waves should have the same direction as the wind. To
capture the deviation of the waves from the wind direction, a stochastic variable  is added to
the wind direction. The angle of wave attack is described as follows:

, if  > 180o then  = 360o - . (4.12)

With onshore waves (0o 180o) the influence factors for wave overtopping are computed
as:

1 0, 0033 0 80
1 0, 0033 80 80 (4.13)

To compute the 2% wave run-up the reduction is determined as,

;

;

1 0,0022 0 80
1 0,0022 80 80

z

z
(4.14)

For 80o <  110o the wave height Hm0 and the wave period Tm-1,0 are adjusted as follows:

Hm0 is multiplied by
110

30 (4.15)

Tm-1,0 is multiplied by 110
30 (4.16)

For 110o <  180o then Hm0 = 0, which results in wave run-up z2%= 0 and wave overtopping
q0 = 0.

5.3.4.3 Computation of average slope
In most cases a dike slope does not consist of an entirely straight slope, but of sections with
various slopes and often with one or more berms. The wave run-up formula requires a
characteristic slope. A representative slope angle is used for this slope, ignoring any berms.
The influence of berms is considered separately (in section 5.3.4.4).

The representative slope angle is computed with the following formula:
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0 2%1.5tan m
repr

slope

H z
L B (4.17)

where:
Hm0 significant wave height at the toe of the dike;
z2% wave run-up height exceeded by 2% of the incoming waves
Lslope horizontal length between two points on the slope, z2% above and 1.5Hm0

below SWL (Still Water Line)
B width of the berm measured horizontally.

In Figure 5.5 (below) these variables are shown.

Figure 5.5 Determination of the characteristic slope for a cross-section consisting of various slope sections,
excluding any berm influence

The dike cross sections in Hydra-Ring can only consist of 3 sections: a lower slope, berm and
upper slope. With this schematization three different situations can be distinguished:

1. Only the lower slope is relevant in determining the average slope angle. This situation
occurs if the level SWL+z2% stays below the height of the berm. The characteristic slope
angle is represented by the lower slope angle alone. The formula for tan repr then
reduces to: tan tanrepr lower slope

2. Only the upper slope is relevant in determining the average slope angle.
This situation occurs if the level SWL–1.5Hm0 stays above the height of the berm. The
characteristic slope angle is represented by the upper slope angle alone. The formula for
tan repr then reduces to: tan tanrepr upper slope

3. The level SWL–1.5Hm0 is on the lower slope and the level SWL+z2% is on the upper
slope.

The first two cases are straighforward. The average slope angle is equal to either lower or
upper slope. The procedure for determining the average slope angle in the third case is more
complicated. This procedure is described below.
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First the SWL-1.5Hm0 and SWL+z2% levels are examined. If the SWL-1.5Hm0 level lies below
the toe of the dike, the toe of the dike is used as representative lower boundary.

                    lower boundary = max(SWL-1.5Hm0, height of toe)

For the upper boundary the minimum of the SWL+z2% and dike height is used:

                                  upper boundary = min(SWL+z2%, height of crest).

The average slope angle is equal to the vertical height difference divided by the horizontal
distance minus the horizontal berm length. As the profiles can only consist of three sections
the average slope angle can also be calculated with:

tan lower slope upper slope
repr

lower slope upper slope

h h
b b (4.18)

where:
hlower slope height difference between SWL-1.5Hm0 and berm
hupper slope height difference between SWL+z2% and berm

blower slope horizontal distance between SWL-1.5Hm0 and intersection between
berm and lower slope

bupper slope horizontal distance between SWL+z2% and intersection between berm
and upper slope.

In case that SWL-1.5Hm0 is below the toe, the height of the toe should be used for calculating
hlower slope (instead of SWL-1.5Hm0). This also applies to the upper slope (use the minimum of

SWL+z2% and the dike height). These distances are shown in Figure 5.6.

SWL

1.5 Hm0

Z2%

h lower slope

b lower slope

h upper slope

b upper slope

Figure 5.6 Relevant distances for determining average slope

In wave run-up and overtopping calculations the berms need to be schematized as horizontal
sections. This means that sloping berms need to be rotated until a horizontal berm is created.
The advantage of this rotating is that the above describes procedure is also valid in case the
berm is not exactly horizontal (for computation of the average slope).
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5.3.4.4 Influence of berms
The position of berms in relation to the still water line (SWL) has influence on wave run-up
ans wave overtopping. In wave run-up formulas, the influence of berms is calculated with a
separate berm factor, in which two influences are taken into account:

- Width of the berm (parameter rb)
- Depth of the berm in relation to the water level (parameter rdh).

These parameters are used in the following formula:

1 (1 )b b dhr r (4.19)

The influence of the width of the berm can be calculated with:

0

0

2 /
1

2 /( )
m berm

b
m berm berm

H L Br
H L B L (4.20)

This factor determines which part of the cross section is horizontal and is considered as berm
(see Figure 5.7).

Figure 5.7 Influence of berm in wave run-up calculations

In Hydra-Ring the factor rb is calculated with the following steps:

1. Determine the berm width
2. Determine the lower influence level the berm
3. Determine the upper influence level the berm
4. Determine the horizontal length between the height level of the berm minus Hm0 and plus

Hm0.

Step 1:
Only horizontal berm can be used in wave run-up calculations. Sloping berms need to be
rotated. The average height level of the berm is determined with the average of lower and
upper boundary of the berm. This will be the ‘new’ schematised berm level. The upper and
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lower slope need to be connected to this berm, which means the width of the original berm
width will decrease (also see Figure 5.8).

Bold

Bnew

Figure 5.8  Conversion of sloping berm to horizontal berm,  is the height difference in the berm

In this figure the new horizontal berm width is calculated with:

/ 2 / 2
new old

lower slope upper slope

B B (4.21)

Step 2:
In order to determine Lberm two levels are needed: the height of the berm minus Hm0 and
height of the berm plus Hm0. In case the toe of the dike or crest of the dike lies outside this
interval, either the toe of the dike or crest level of the dike is used. The lower influence level of
the berm can therefore be calculated as:

max(hberm – Hm0, htoe). (4.22)

Step 3:
The upper influence level can then be determined with:

min(hberm + Hm0, hcrest of dike) (4.23)

Step 4:
The value for Lberm can now be calculated with.

0 0min( , ) min( , )
tan tan

m berm toe m crest berm
bern new

lower slope upper slope

H h h H h hL B (4.24)

where:
Bnew horizontal berm width;
hberm height level of horizontal berm;
htoe height level of the toe of the dike;

lower slope slope angle of the lower slope;
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hcrest height level of the crest of the dike;
upper slope slope angle of the upper slope.

The influence of the depth of the berm is represented by the factor rb:

0.5 0.5cos h
dh

d
r

x (4.25)

where:
dh berm depth in relation to SWL (negative values indicated berm is above SWL)

and where:

x = z2% if z2% > -dh > 0
x = 2 Hm0 if 2Hm0 > dh >=0
rdh = 1 if –dh >= z2% or dh>= 2Hm0

(4.26)

The influence of the depth of the berm can be divided in three parts:
- The berm level lies below SWL (x = z2%).
- The berm level lies above SWL (x = 2 Hm0).
- The berm level lies far beneath or above the berm level and has no influence on wave

run-up (rdh = 1).

In Hydra-Ring this division is implemented, where the value for z2% is evaluated before being
used in this formula. If the crest height is lower than the z2% wave run-up level, the difference
between the crest height and the water level is used. This evaluating is only used for cases,
where the SWL is below the berm. On the other hand, if the SWL is above the berm and 2
times Hm0 is below the toe of the dike no correction is used for x. This parameter is still equal
to 2Hm0.

After calculation of b, a final evaluation is performed, as the value of b should satisfy:

0.6 1.0b (4.27)

If b is less than 0.6, b is set equal to 0.6.

5.3.4.5 Influence of roughness
The influence of the roughness of a revetment on a dike for wave run-up is given by the
influence factor b. For numerous types of revetment standard roughness factors exist.
However the relation between wave height and roughness of the slope is also relevant in
wave run-up calculations.
The roughness factors that are known are valid for situation where b 0 < 1.8. For values
larger than 1.8 the influence factor f increases linear to 1 for b 0 = 10.



1206006-004-ZWS-0001, 2 January 2013, draft

Hydra Ring Scientific Documentation 211 of 259

The mentioned value 1.8 is the value where the product b 0 gives the point where the two
lines of Figure 5.4 intersect. This boundary point can be computed using the two functions for
wave run-up:

3
0 1 0 0 2

0
m mb f f

f
H f H f run-up

run-up run-up (4.28)

which results in:

3
1 0 2

0
b

f
f f run-up
run-up run-up (4.29)

The boundary value for b 0 depends on values for b. In Hydra-Ring the boundary value is
approximated by

2
2 1 0boundary b bf f f (4.30)

where
b influence factor for a berm

f0,f1,f2 model factors.

This boundary values is used to determine if the roughness factor is used for the influence
factor for roughness or that a higher influence factor should be used. If the value for 0 is
larger than the boundary breaker parameter boundary, the following formula is used:

0
, ,(1 )

10
b boundary

f f ref f ref
boundary

(4.31)

where
f,ref original roughness factor (as valid for b 0 < 1.8)
b influence factor for a berm
0 breaker parameter
boundary boundary breaker parameter

A final evaluation of the value of f is performed, so that the value of the influence factor for
roughness equals 1 for b 0  10.

5.3.4.6 Computation for the total reduction factor
A requirement of the total reduction factor ( b f ) is that the value of this total factor is larger
than 0.4. If this is not the case, then a minimum factor of 0.4 should be used. There is
however a difference in wave run-up calculation for situations with low and high values for the
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breaker parameter. As the actual wave run-up is calculated by determining the minimum of
both formulas, a difference in the partial reduction factors can occur. In the formula for high
values of the breaker parameter, the influence factor for berms is not present.
In these cases the partial influence parameters are adjusted with the following routine. A new
variable representing the total reduction factor is introduced, t:

,min

,min

,min

1
1

1
1

1
1

t f b

f
f

f

b
b

b

t f b

f

f

f

f f f f

(4.32)

where:
,minf =0.55 the minimal influence factor for roughness,

,minb =0.6 the minimal influence factor for berms,

,min =0.736 the minimal influence factor for angle of wave attack.

These factors are used to calculate adjusted partial influence factors.

0.4' exp ln

0.4' exp ln

0.4' exp ln

f
f f

t t

b
b b

t t

t t

f
f

f
f

f
f

(4.33)

It is easy to verify with the above formulas that the total influence factor is equal to 0.4 if the
total influence factor was originally less than 0.4:

' ' ' ' 0.4t f b (4.34)

5.3.4.7 Computation of the overtopping discharge qo
The overtopping discharge qo is computed with the following formula, but only if the breaker
parameter is less or equal to 5:

3
0min( , )o b n mq Q Q gH 0 5 (4.35)

where:
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Qb dimensionless overtopping discharge for breaking waves;
Qn dimensionless overtopping discharge for non-breaking waves;
g gravity force;
Hm0 significant wave height;

0 breaker parameter.

In shallow water (i.e. breaker parameter is greater than or equal to 7) an adapted formula is
used:

3
0o shallow mq Q gH 0 7 (4.36)

where:
Qshallow   dimensionless overtopping discharge for shallow water.

Between the breaker parameters 5 and 7 logarithmic linear interpolation is used:

0 0 0

30
05 7 5

5exp ln( ) ln( ) ln( )
7 5o n shallow n mq Q Q Q gH 05 7 (4.37)

In this last formula it is sufficient to only use Qn for non-breaking waves. The transition
between breaking and non-breaking waves is below 0 b = 2. For 0 b > 2 only non-breaking
waves are relevant. The minimum value for b is equal to 0.6, therefore the scenario with a
breaker parameter between 5 and 7 only applies to non-breaking waves.

Dimensionless overtopping discharge for breaking waves Qb
The dimensionless overtopping discharge for breaking waves (Qb)  is  computed  with  the
following formula:

0
0 0

0.067 1exp
tan

k
b b b

m b frepr

h h
Q f

H (4.38)

where:
hk height of the outer crest line;
h local water level;
Hm0 significant wave height at the toe of the dike;

repr average angle of the outer slope;
fb model factor for breaking waves (= -4.3);

reduction factor for the angle of wave attack;
f reduction factor for roughness of the slope;
b reduction factor for the influence of the berm;
0 breaker parameter.

Dimensionless overtopping discharge for non-breaking waves Qn
The dimensionless overtopping discharge for non-breaking waves (Qn) is computed with the
following formula:
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0

10.2 exp k
n n

m f

h hQ f
H (4.39)

where:
hk height of the outer crest line;
h local water level;
Hm0 significant wave height at the toe of the dike;
fn model factor for non-breaking waves (= -2.3);

reduction factor for the angle of wave attack;
f reduction factor for roughness of the slope.

Dimensionless overtopping discharge for shallow water Qshallow
The dimensionless overtopping discharge for shallow water (Qshallow) is computed with the
following formula:

0 0

exp
(0.33 0.022 )

k
shallow shallow

f m

h hQ f
H (4.40)

where:
hk height of the outer crest line;
h local water level;
Hm0 significant wave height at the toe of the dike;
fshallow model factor for shallow waves(= 0.21);

reduction factor for the angle of wave attack;
f reduction factor for roughness of the slope;
0 breaker parameter

5.3.5 Overtopping: PC-Ring approach

The PC-Ring implementation of the van der Meer model [REF] is almost identical to the PC-
Overslag approach. There are only some subtle differences which are here mentioned. The
reason for supporting this implementation is only to be able to to reproduce PC-Ring results.
In the box below, the computation steps used by PC-Ring are mentioned as well as the
sections where these steps are explained. Note that there references to the procedure used
in PC-overslag as many computation steps of this approach are still used by PC-Ring.

1. Calculate influence factor for angle of wave attack ,z for wave run-up  section 5.3.4.2
2. Adjust wave conditions Hm0, Tm-1,0 if  > 80 degrees  section 5.3.4.2
3. Iterate until 2% wave run-up reaches an equilibrium

a. Calculate average slope, tan section 5.3.4.2
b. Calculate z2%,smooth (smooth: for b = 1 and f = 1) section 5.3.4.1
c. Calculate influence factor for roughness on slope f section 5.3.5.1
d. Calculate z2%,rough (rough: for b = 1)  section 5.3.4.1
e. Calculate influence factor for berms b section 5.3.5.2
f. Calculate 2% wave run-up  section 5.3.4.1
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4. Calculate influence factor for roughness on slope f section 5.3.5.1
5. Calculate influence factor for angle of wave attack  for wave overtopping  section 5.3.4.2
6. Adjust influence factors in case b f  < 0.4, so that b f  = 0.4 section 5.3.4.6
7. Calculate wave overtopping with the computed b and f section 5.3.4.7

5.3.5.1 Influence of roughness
In Table 5.4, the roughness values for different types of slopes are presented. The reduction
factor f for the roughness of the slope is equal to the roughness value for op < 3. From op =
3, the roughness factor a linear function with 1 as limit for op =  5.    For  higher  values,  the
reduction factor remains equal to 1.

Table 5.4  Roughness coefficients
Reference type f(roughness coefficients)
Concrete 1.0
Asphalt 1.0
Closed concrete block 1.0
Grass 1.0
Vilvoorden stone 0.85
Basalt 0.90
Haringman 0.90
Fixtone-open stone asphalt 0.90
Armoflex 0.90
Small blocks over 1/25 of surface 0.85
Small blocks over 1/9 of surface 0.80
¼ of block revetment 10 cm higher 0.90
Ribs (optimum dimensions) 0.75
Armour rock - two layers thick 0.55
Armour rock – single layer 0.70

5.3.5.2 Influence of berms

Geometry
In the PC-Ring approach, a simple dike geometry is employed. The dike profile must be
described as follows:

 one straight outer slope between the toe and the berm
 one horizontal berm
 one straight outer slope between the berm and the crest of the dike
 de height of the outer crest line

In this approach, the inner and outer slope, de berm height and width and the height of the
outer crest line are considered to be stochastic variables. Additionally, the roughness factor is
chosen as the roughness of the outer slope between the berm and the crest of the dike.

Berm factor b

The influence of the berm width is described by the change in the slope. The influence in the
berm location must be described between the space 2Hs under the still water line up to z2% on
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the lower slope. In this model, it is assumed that the berm is horizontal. Thus, the factor rB in
equation (4.20) for a horizontal berm with width B is  written as:

ousbus
B BHBH

r
;; tan/tan/1

1
(4.41)

The influence of the berm location with respect to the water still line is defined as,

2

5,0
s

h
dh H

d
r

 for  0  rdh  1
(4.42)

where the middle of the berm lies at a depth dh below the still water line. The water depth at
the berm location is the difference between the local water level h and the height of the berm
hB:

dh = h - hB (4.43)

These formulas for the reduction factor b can only be applied if the local water level h is
similar to berm height. The bounds for its application are estimated to be:

-0,5 Hs  dh +0,5 Hs (4.44)

5.3.6 Critical overtopping discharge (CIRIA model)

The critical overtopping discharge qc for Hydra-Ring is in general a direct user input.

As an alternative, Hydra-Ring can also determine the critical overtopping discharge based on
the grass strength, using a model from the CIRIA research [8].

2

3

tan C
v

q
i

c
c (4.45)

where vc is the critical discharge speed, i is the angle of the inner slope and C is the
roughness factor of Chézy. The roughness factor of the inner slope is determine with the
Strickler relation as,

6
1

25
c

c

vk
q

C (4.46)



1206006-004-ZWS-0001, 2 January 2013, draft

Hydra Ring Scientific Documentation 217 of 259

where k is the roughness factor in the inner slope (see Table 5.4). An alternative approach is
the Manning relation with roughness factor n. These two expression are coupled by the
formula,

25

6
1

kn (4.47)

Combining the formulas of Chézy and Strickler, the critic overtopping discharge is computed
as,

43

4125

tan125 i

c
c

kv
q (4.48)

In The Netherlands, Chézy roughness factor is computed with the relation of White-
Colebrook. In Hydra-Ring, Strickler expression is used as this is the standard approach in
other countries. Additionally, Strickler expression offers the possibility to solve analytically for
the critical discharge qc.

The critical discharge speed vc, that after the time period te,  causes the grass layer to fail  is
given by,

)log8,01(
8,3

10
e

gc t
fv (4.49)

where fg is a factor determined by the quality of the grass layer (its ranges from between 0.7
for bad quality to 1.4 for good quality of grass), te is the time period measured in hours and vc

is the critical discharge speed measured in m/s.

The quality factor fg (see table Table 5.5) and the erosion resistance cg of the grass layer are
properties of the grass slayer with a strong correlation. For this reason, in Hydra-Ring the
following relations are used for these two variables:

5,15106 gg fc  or:
3/2

5106
g

g
c

f (4.50)

For the residual strength of the protective clay layer (blanket layer) it is assumed that the
erosion of grass (tRT,outside) given the clay layer (tRK,outside) in the outer talud (see mechanism
damage revetment) behaves in the same way as the erosion of grass (tRT,inside) given the clay
layer (tRK,inside) in the inner slope,

, ,

, ,

RT outside RT inside

RK outside RK inside

t t
t t (4.51)
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Making use of the model to determine the damage in the revetment in the outer slope, it is
possible to compute the relation between the erosion of the grass revetment and the
protective clay layer in the outer slope:

,

, 0,4
g wRT outside

RK outside RK K

c dt
t c L

(4.52)

where dw is the depth of the rooting of the grass, cg is the erosion resistance of the grass
layer, cRK is a coefficient determined by the erosion resistance of the protective layer and LK
is the width of the protective clay layer. Values of dw = 0,1 m  and cRK = 23000 ms [7], are
assumed for the depth of the grass rooting and for the erosion resistance.

In order for the dike to fail, the grass revetment and the protective clay layer have to erode
within the storm period ts,

, ,s RT inside RK insidet t t (4.53)

As input for the grass strength model in CIRIA, the relevant time period te for grass erosion is
needed. The relevant storm period can be derived from the expressions above as,

, ,
, , ,

0, 4 0, 4RK K inside g w RK K inside
s RT inside RT inside RT inside

g w g w

c L c d c L
t t t t

c d c d

,
,0,4

g w
RT inside s

g w RK K inside

c d
t t

c d c L

(4.54)

The value of LK is assumed to be is assumed to be zero when no residual strength or
liquefaction is taken into account. Otherwise, LK can be determined making use of the
thickness of the protective clay layer and the angle of the slope as shown in (insert figure or
equation).
Taking into account the amount of time Pt that overtopping or overflow take place, it is
possible to determine the strength of the grass layer applying the CIRIA relation,

te = Pt tRT,inside (4.55)

For overflow, Pt is equal to 1. For overtopping, the value of Pt can be provided or computed
with an overtopping model. As a remark, in order to compute Pt, the change in the wave pulse
should be taken into account.

5.3.7 Relevant variables for overtopping and overflow failure mechanisms
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In Table 5.5 and Table 5.6 an overview of the variables that are used to compute the failure
mechanism overtopping and overflow are  presented.

Table 5.5  Overview of the variables to compute the failure mechanism overtopping
Description Unit ID

mqc Model factor critical discharge [-]
qc Critical discharge [m3/s]
mqo Model factor overtopping discharge [-]
qo Overtopping discharge (PC-overslag/PC-Ring) [m3/s]
Pt Percentage of time that overtopping/overflow

takes place
[-]

Table 5.6 Overview of the variables to compute the failure mechanism overflow
Description Unit ID

h Outer water level [m+NAP]
hd Dike height [m]

hc Critical height difference [m]
qc Critical overtopping discharge [m3/s]
hB Outer bank height [m+NAP]
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5.4 Failure mechanism ‘Macrostability’

5.4.1 Introduction
Dike failure due to the mechanism macro-instability inner slope (also referred to as e.g.
sliding of the inner slope) occurs when the inner slope of the dike becomes unstable and
begins to slide due to the development of water pressures inside and/or below the dike.
Although it can occur both at the inner side and at the outer side, we generally only consider
macro instability of the inner slope. Macro instability of the outer slope usually occurs and
quickly dropping water levels; Macro instability of the inner slope is considered the more
dangerous type. Failure is defined as a breach that occurs as the result of macro instability of
the inner slope, see Figure 5.9. Failure occurs after instability of the inner slope (Stab) and a
breach following the macro instability (StPf). The MPROSTAB model is used to calculate the
probability of this failure mechanism conditional toanoutside water level. With the aid of the
results of the MPROSTAB calculations, PC-Ring can subsequentlydetermine the total failure
probability for the failure mechanism macro instability of the inner slope.

Failure due to macro
instability inner slope

Stab: macro instability inner
slope

StPf: Failure after sliding
inner slope

and

Figure 5.9  Fault tree analysis

5.4.2 Sub-mechanism Stab: Macro instability inner slope

5.4.2.1 MPROSTAB
General
The Bishop method of moments is used to calculate the mechanism of macro instability of the
inner slope. The method assumes moment equilibrium of the whole failure plane and vertical
forces equilibrium of the separate slices. The horizontal forces equilibrium is not guaranteed.
In addition, the model assumes that macro instability will result in immediate failure without
any kind of residual strength.

Bishop’s method is a 2D consideration in the plane perpendicular to the longitudinal axis of
the slope. It is assumed that the failure planehas an infinitely long cylindrical shape. As it
actually has a finite length, contributions to the resisting moment of the failure plane’s edge
can be of influence. However, this has not been taken into account in the (deterministic)
stability analysis.

For the probabilistic stability analysis conform MPROSTAB, Bishop’s method has been used
as standard computational model.In the probabilistic stability analysis, it is assumed that the
failure plane has a finite length. The contributions to the resisting moment of the failure
plane’s edge can, therefore, be taken into account. In addition, both the length of the failure
plane and the contribution of the failure plane’s edges to the resisting moment are considered
stochastic quantities.

Shear strength



1206006-004-ZWS-0001, 2 January 2013, draft

Hydra Ring Scientific Documentation 221 of 259

The shear strength computation is based on the drained parameters c' (cohesion) and ' ''
(friction angle), according to the formula:

'  ( ) tan( ')c u (4.56)

in which   is the effective shear strength along the underside of a slice, the total normal
stress on the underside of a slice anduthe water(over)pressure. The shear strength
parametersc' and ' can be determined using triaxial tests, cell tests, direct or simple shear
tests, etc.
The computed values of the shear strength parameters from the test data depend on the
strain level of the tested soil sample with which the shear strength parameters are
determined.

In triaxial tests, a strain level of 2%, 5% or 10% is used, or peak values of the shear strength
are used to determine the shear strength parameters. The used strain level, or peak level,
determines the foundc' en '.

In cell tests, the strain level at which the shear strength parameters are determined is not set
explicitly, but it ranges somewhere between 1% and 2%. This influences the interpretation of
the physical appearance of limit state exceedance with respect to stability. If we use peak
shear strength, the limit state exceedance can be identified with the actual instability of the
inner slope. When we use small strain levels, the limit state exceedance has to be interpreted
as the development of excessive deformations that will eventually result in macro instability of
the inner slope. In other words, the physical appearance of the limit state exceedance with
regard to stability is not univocal, but it depends on the test and testing procedure chosen to
determine the shear strength parameters. A complication is that the shear strength
parameters at a certain strain level may not be used unambiguously to determine the shear
strength parameters at a higher strain level or the peak shear strength parameters. In
probabilistic stability analysis this can be compensated by using a computational model
uncertainty factor depending on the type and performance of the test.

Water pressure

Bishop’s method of moments, on which MPROSTAB is based, is a so-called “effective stress
analysis”. This implicates that the water pressure in the soil body is given. Within MPROSTAB
this is done by specifying piezometric lines. For the top layer - or at least for the first partly-
saturated layer - one piezometric line is defined. The programme interprets this line as the
phreatic head. The water pressures in the underlying layers are assumed hydrostatical,
unless piezometric lines have been defined for these layers (always two per layer, the first for
the top and de second for the bottom layer). The hydraulic head in a vertical of such a layer is
linearly interpolated between the hydraulic head at the top (first piezometric line) and the
bottom of the layer (second piezometric line). This way, water over pressure can be specified.
The bottom layer (usually deep sand layer) is not restricted downwards. The hydraulic head in
a vertical of such a bottom layer is considered constant, and the water level therefore
hydrostatical, and equals the hydraulic head at the top of that layer (first piezometric line for
this layer).

A special situation arises during construction phases in which the layers are not fully adjusted
to the layers above (incomplete consolidation). Water over pressure can then be specified
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using adjustment percentages. For flood risk computations with Hydra Ring, a complete
adjustment of water pressures (a consolidated or long-term situation) is assumed.

Water pressures occurring in the soil body given a certain outer water level should be
determined conform the usual procedures, such as calculating the groundwater flow,
geohydrological calculations while taking into account uplift or uplift head difference, any
(extrapolated) measurements, etc. (see Guidelines for the design of River Dikes and
“Technisch Rapport Waterspanningen in Dijken”).

The instability probability computed with MPROSTAB is, in principle, a conditional instability
probability given the outer water level and water pressure in the soil body that has been
determined as a function of the outer water level. PC-Ring also includes a method to
calculate the probability of failure while taking into account the probability distribution function
of the outside water level.

Equilibrium analysis, stability factor
The local stability factor (that is the stability factor belonging to a single cross section,
calculated according to Bishop’s method) can be determined based on the modelling of shear
stress and water (over) pressure. The deterministic stability factor of a slip circle  comes
from the limit equilibrium:

' 'tan
R A

i i i i i
R

M M

R c u b
M

(4.57)

In  which  MA is the driving moment of the slip circle concerned (with radius R) and MR the
resisting moment at Mr is calculated by summing the mobilised shear strength along the slip
circle and multiplying it with the radius of the circle. The slip circle has been divided in N
slices to calculated the mobilised shear strength, with lengths bi for the bottom of the slices
along the slip circle. Perpendicular to the bottom of the slices, the water pressure ui and soil
pressure I are acting. The soil pressures follow from a vertical equilibrium of forces affecting
the slices, which are: the force due to its own weight, the force due to stress perpendicular to
and the shear stress along the bottom of the slice. The stability factor is determined
iteratively.

The critical slip circle is the slip circle with the smallest stability factor, to be determined
iteratively. The stability factor of the slope equals the stability factor of the critical slip circle.

Reliability function probabilistic analysis
The limit state function of the probabilistic stability analysis can thus be written as:

Z q (4.58)

in which the threshold value q must be equal to 1,0, provided that there is no computational
model uncertainty. In the probabilistic stability analysis, we use a stochastic threshold value of
which the mean and standard deviation depend on the type of tests used to assess the shear
stress parameters (as mentioned above).
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5.4.2.2 Influence stochastic research outside water level
With the program MPROSTAB, the failure probability of macro instability of the inner slope of
a dike ring is calculated conditional to an outside water level and during the total
computational period. By doing this calculation for a number of water levels, it is possible to
generate an input file with which the failure probability of the mechanism of macro instability
can be computed accurately by integrating over the probability density of the water level.

The statistics needed to determine the local water level is processed using the mechanism of
macro instability of the inner slope in Hydra Ring (including closing regime). The limit state
function thus becomes:

MPROSTABn

i
ii uhhZ

1
)()( (4.59)

in which  is the reliability index according to MPROSTAB conditional towater level h, iare
the FORM  influence coefficients given this water level resulting from the MPROSTAB
calculationsandui the variables with a standardnormal distribution.

Table 5.7 Overview variables sub-mechanism STAB: Macroinstability inner slope.
Description unit ID
variabilitycohesion [kN/m2] 2001
uncertainty mean value cohesion [kN/m2] 2002
variabilitytan( ) [m] 2003
uncertaintymean valuetan( ) [-] 2004
correlations cohesion andtan( ) [-] 2005
uncertainty water (over) pressure [m+NAP] 2006
uncertainty phreatic line [m+NAP] 2007
model uncertainty [-] 2008

5.4.3 Sub-mechanism StPf: Failure probability after macro instability inner slope
When macro instability of the inner slope occurs, it does not always result in dike failure. This is
expressed in the failure probability given the occurrence of the mechanism macro instability: StPf. The
standard value for this probability is Pstab StPf= 1,0, which implies dike failure give instability of the
inner slope. Lower values may be used in case it can be shown the water retaining function remains
intact after macro instability of the inner slope.

Given the failure probability, the following reliability index can be found:

1
stab StPfP (4.60)

The following limit state function can then be applied:

uZ stab (4.61)

in which u is the standard normal distributedvariable withmean 0 anda standard deviation 1,0.

Table 5.8 Overview variablessub-mechanism StPf: failure probability after macro instability inner slope.
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description unit ID
Pstpf Failure probability after macro instability inner slope [-] 2009

5.4.4 Variables for the mechanism of macro instability inner slope
Error! Reference source not found. presents an overview of the distributions of variables in
the sliding models. For the variables related to the hydraulic load, please refer to chapter 3
and 4.

Table 5.9 Variables for the mechanism macro instability inner slope
ID description unit type Parameters spatial distribution Variationover

time

location distribution dx x t t

2001 variabilitycohesion [kN/m2] - - - - 0 - 1

2002 uncertainty mean value cohesion [kN/m2] - - - - 0 - 1

2003 variabilitytan( ) [m] - - - - 0 - 1
2004 uncertainty mean value tan( ) [-] - - - - 0 - 1

2005 correlations cohesionand tan( ) [-] - - - - 0 - 1

2006 uncertainty water (over) pressure [m+NAP] - - - - 0 - 1
2007 uncertainty phreatic line [m+NAP]  - - - - 0 - 1

2008 model uncertainty [-] - - - - 0 - 1

2009 Pstpf failure probability after macro
instability inner slope

[-] det nom - - - - -

5.5 Piping and heave’

5.5.1  Description
When the mechanism of uplift and piping occur, the dike fails because soil particles are being
washed out. The water pressure first leads to bursting (uplift)of the cohesive blanket layers of
the dike (or aquitard). The resulting water flow causes the development of pipe shaped
erosion channel (piping) in non-cohesive sand layer below the dike (aquifer). The complete
failure mechanism is thus composed of two sub-mechanisms. Failure only occurs if for both
mechanisms the resistance drops below the load, or, formally:

{Failure} = {uplift AND piping}

Figure 5.10 provides a schematic description in the shape of a fault tree.

Failure due to uplift
and piping

OPBA: Uplift PIPE: piping

en

Figure 5.10:Fault tree uplift and piping

The guidelines TAW (1994) and the Technical Report Sand Boils (TAW, 2002) have been
used to describe this mechanism. In addition, the following figure presents the definition of a
number of variables. For the complete definitions of the various sub-mechanisms, please
refer to the subsequent sections.
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D

D0
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Figure 5.11 Definitions of variables of uplift and piping in a typical cross-section of a dike

in which:
D0 is the thickness of the cohesive blanket layer [m];
D is the thickness of the permeable sand layer [m];
h is the local outer water level [m+NAP];
hkp is the inner water level [m+NAP];
L is the length of the seepage (the length between the entrance and exit point,which is

usually minimally the width of the flood defence) [m].
Further instructions to determine the length of the seepage path are given in the
Safety Assessment Regulation (Ministerie Verkeer en Waterstaat, 2006

The thickness of the cohesive blanket layer is used to compute the mechanism of uplift (see
section 5.5.2). This value is equal to the vertical seepage length with piping (see section
5.5.3).

The inner water level is the same as the water level in the ditch or, in case there is no ditch,
the surface level. In addition to the various models on uplift and piping, it is also possible to
compute several piping scenarios for one location. The probability of uplift and piping for each
scenario is computed separately and multiplied with the piping scenario probability to obtain
the total failure probability of uplift and piping.

5.5.2 Sub-mechanism ZfOPBA: Uplift
When the mechanism of uplift occurs, the water pressures in the sand layer leads to bursting
(uplift) of the cohesive blanket layer (aquitard). The maximum pressure in this layer can be
expressed as a critical water level. The blanket layer will burst if the difference between the
local water level hand the inside water level hkp exceeds the critical water level difference hc.
This gives the following limit state function:

)( kphco hhmhmZ (4.62)

This limit state function also includes two model factors, mo and mh. The model factor mo

represents the model uncertainty with which to determine the critical water level during uplift.
The damping factor, mh. indicates the level of damping (i.e. head difference reduction).
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The critical water level difference hc is a function of the wet volumetric weight of the cohesive
blanket layer nat, the volumetric weight of water w, and the thickness of the cohesive blanket
layer D0:

00Dh
w

wnat
c (4.63)

If D0 has a mean value of 0, it is assumed that there is no cohesive blanket layer present. The
probability of failure of the mechanism uplift then equals 1.

Table 5.10 Overview variables sub-mechanism ZfOPBA: uplift.
Description Unit ID

mo Model factor uplift [-] 3012
hc critical water level difference [m] -
mh Damping factor [-] 3014
h outside water level [m+NAP] -
hkp inside water level [m+NAP] 99007

nat Wet volumetric weight cohesive blanket layer [kN/m3] 3010
w volumetric weight water [kN/m3] 99008

D0 thickness cohesive blanket layer [m] 3001

5.5.3 Sub-mechanism ZfPIPE: Piping
When the mechanism of piping occurs, the increasing outside water pressure leads to the
development of a pipe shaped erosion channel from the exit point of the water to the entrance
point. The maximum resistance against piping in the sand layer can be expressed as a critical
water level. The dike will fail as a consequence of piping if the difference between the local
water level h and the inside water level hkp, reduced with a part of the vertical length of the
seepage path exceeds the critical water level hp. A smaller difference may lead to the
development of piping but will not lead to dike failure.

For the sub-mechanism piping, the following two models five models have been implemented
in Hydra Ring:

1. The calculation rule of Sellmeijer (2007)with c determined with the specific
permeability k;

2. The calculation rule of Sellmeijer (2007)with c determined with Bear’s constant

We will further discuss these models in the following section.

5.5.3.1 Sellmeijer’s rule
TAW (2002)is used to describe the mechanism of piping, which, is based on Sellmeijer’s rule.

The limit state function can be written as:

)3,0( 0 kppS hDhhmZ (4.64)

This limit state function includes the modelfactor mS. This model factor mSis the model
uncertainty with which, for piping, the critical water level over the dike is determined using
Sellmeijer’s rule.
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The critical water level hpis presented in Sellmeijer’s rule by the following relation:

0tan)ln1,068,0( cLch
w

wk
p (4.65)

The critical gradient is determined by the factor , the coefficient c, the length of the seepage
path L, the volumetric weight of the sand grains k (27 kN/m3), the volumetric weight of water

wand the bedding angle of the sand.

The factor  reflects the effect of the limited thickness of the aquifer:

)1)((

28,0

1 8,21

L
D

L
D (4.66)

The coefficient c is determined using the properties of the sand in the aquifer subject to
erosion.

3
1

1
L

dc 70 (4.67)

in which  is the drag force factor (White’s constant), d70representsthe 70% percentile grain
size of the sand in the aquifer (the mesh size of a fictitious sieve through which 70 percent of
the weight of the sand samples passes),  the intrinsic permeability and L the seepage
length.
The intrinsic permeability can be determined in a number of ways. For instance, the specific
permeability kz;b [m/s] results in the following relation:

k
g bz; (4.68)

in which  is the kinematic viscosity (1,33·10-6 m2/s for water at 10oC) and g the gravitational
constant9,81 m/s2).

If we use this term in the equation for the coefficient c, we find:

3
1

;
70 Lk

gdc
bz

 (model 1) (4.69)

if the permeability is unknown, can be estimated based on the representativeof the small
grain size d10 [m] of the sand. This relation is as follows:

2
10Bear dC (4.70)

in which CBear is the constant of Bear (CBear ranges between 0,5·10-3for silty sand and 1,2·10-3

for clean sand).
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If we use this term in the equation for the coefficient c, we find:

11
331

2

70 70
70 2

Bear 10 Bear 10

d d1c d
C d L C d L

 (model 2) (4.71)

in  which  (d70 / d10) is a measure for the uniformity of the sand. Both statements for the
coefficient c have been implemented in PC-Ring. Note that for common piping problem, the
d70 of the upper part of the sand layer is used, while the permeability of the aquifer should be
used, in which case the d70 / d10measure may not be used

Table 5.11 Overview variables sub-mechanism ZfPIPE: Piping with the calculation rule of Sellmeijer
description unit ID

ms modelfactor Sellmeijer [-] 3013
hp critical gradient [m] -
h outside water level [m+NAP] -
D0 thickness cohesive blanket layer [m] 3001
hkp inside water level [m+NAP] 99007

Geometry factor [-] -
c Erosion coefficient [-] -
L length of the seepage path [m] 3004

k volumetric weight sand grain material [kN/m3] 3011
w volumetric weight water [kN/m3] 99008

bedding angle [º] 3005
D1 thickness upper sand layer [m] 3002

White’s constant [-] 3009
d70 70% percentile grain sizeupper sand layer [m] 3007

intrinsicpermeability [m2] -
kinematic viscosity [m2/s] -

g gravitationalconstant [m/s2] -
kz;b permeability upper sand layer [m/s] 3015
CBear Factor Bear [-] 3006
d10 10% grain size sand [m] -
d70/d10 uniformity [-] 3008

Variables for the mechanism of uplift/piping

Table 5.12 presents an overview of the distribution of variables in piping models.

Table 5.12 Variables for the mechanism uplift/piping.
ID description Unit Type Parameters Spatial

distribution
Variation over

time
locatio

n
distributio

n
dx x t t

3001 D0 thickness cohesive blanket layer [m] log nom V = 0,3 200 m 0 - 1
3002 D1 thickness sand layer 1 [m] log nom V = 0,1 200 m 0 - 1
3003 D2 thickness sand layer 2 [m] log nom V = 0,1 200 m 0 - 1
3004 L Length of the seepage path [m] log nom V = 0,1 3000 m 0 - 1
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3005 bedding angle [º] log 43º  = 3º 600 m 0 - 1
3006 CBear Factor CBear [-] log nom V = 0,15 450 m 0 - 1
3007 d70 [m] log nom V = 0,15 180 m 0 - 1
3008 d70/d10 Uniformity [-] log nom V = 0,15 750 m 0 - 1
3009 Constant of White [-] log 0,3 V = 0,15 - 1 - 1
3010 nat Wet volumetric weight cohesive cover

layer
[kN/m3] nor nom V = 0,05 300 m 0 - 1

3011 k Volumetric weight sandgrainmaterial [kN/m3] nor 27 V = 0,01 300 m 0 - 1

3012 mo Modelfactor uplift [-] log 1 V = 0,1 - 1 - 1

3013 mS Modelfactor Sellmeijer [-] log 1 V = 0,08 - 1 - 1

3014 mh Damping factor [-] log nom V = 0,1 - 1 - 1

3015 kz;b  Permeability upper sand layer 1 [m/s] log nom V = 1 600 m 0 - 1

3016 kz;o  Permeability lower sand layer 2 [m/s] log nom V = 1 600 m 0 - 1

3017 kz;u  Permeability river side sand layer 3 [m/s] log nom V = 1 600 m 0 - 1

3018 Ccreep Creep factor Bligh [-] log nom V = 0,1 - 1 - 1
3019 mB Modelfactor Bligh [-] log 1,5 V = 0,15 - 1 - 1

3020 mM Modelfactor Mpiping [-] log 1 V = 0,08 - 1 - 1

3021 B Width areaprone to piping (see NB2) [m] det nom - - - - -
3022 Psc Probability pipingscenario [-] det nom - - - - -

99007 hkp inside water level [m+NAP] nor nom  = 0,1 m vak 1 12
hours

0

99008 w Volumetric weight water [kN/m3] det 10 - - - - -

NB 1:  For the lognormal distribution, the mean and standard deviation of the real lognormal
distribution are given and notof the underlying normal distribution.

NB 2: The width of piping-prone area B is only used to determine the length-effect.

5.5.4 Subsoil scenarios
Hydra-Ring uses subsoil scenarios to incorporate the uncertainty regarding the
composition/layering of the subsoil. Usually, 10 scenarios are defined for each 250 m dike
section, based on regional geological data and local measurement; 5 scenarios with blanket
layer and 5 scenarios without blanket layer. Each scenario is assigned a probability of
occurrence. For each scenario, the probability of piping is calculated. The probability of failure
of a dike section is calculated by summing the products of piping probability of scenario
probability.
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6 Statistical distribution functions

N.B This chapter is planned to be move to an appendix

6.1 Introduction
This chapter describes the supported distributions and correlation models for load and
strength variables. Strength and load variables can follow a number of probability
distributions. Table 6.1 gives an overview of the probability distributions supported in Hydra-
Ring.

Table 6.1  Probability distributions of load variables, supported in Hydra-Ring.
Probability distributions
Uniform
Normal
(Shifted) lognormal
(Shifted) exponential
Gumbel
Weibull
Rayleigh
Pareto
Triangular
Multi-linear interpolation
Modified Gumbel
Conditional Weibull

Each of these distributions and the required input parameters will be described in the
following subsections.

6.2 General method to avoid influence of rounding errors
As described in section 3.3.1, statistics are generally described with inverse distribution
functions: x = F-1(p). For extremely high values of a variable x, the probability of non-
exceednace, p, will be close to 1. It may occur that p is so close to 1, that the computer
program rounds it off to 1. This will lead to an inaccurate result of F-1(p) and in some cases
even an error because the function is not defined for p=1. To prevent this from happening, p
is replaced in those cases with exp(-q), where q=1-p. The functional description of F-1(p) is
thus replaced (only for p close to 1!) by F-1(exp(-q)). The value of q is close to 0, since p is
close to 1. Values close to 0 can be represented with much higher accuracy than values close
to 1. Therefore, F-1(exp(-q)) will give a higher accuracy than F-1(p).

6.3 Uniform distribution

The probability density function for the uniform distribution is given by:

1 ,

0

for a x b
f x b a

for x a or x b
. (4.72)
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The corresponding cumulative distribution function is given by:

0

,

1

for x a
x aF x for a x b
b a

for x b

. (4.73)

The inverse of the uniform distribution is given by:

1 , 0,1F p a p b a p , (4.74)

The inverse, F-1, gives the value of x associated for a given value of the probability of non-
exceedance, p.

The distribution parameters a and b indicate the range over which the probability density
function is non-zero, with a indicating the starting point and b indicating the ending point.
Figure 6.1 and Figure 6.2 show the uniform probability density and cumulative probability
distribution, respectively, as a function of a and b.

Figure 6.1 Uniform probability density function, with parameters a and b indicated

Figure 6.2 Uniform cumulative distribution function, with parameters a and b indicated
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6.4 Normal distribution
The probability density function for the normal distribution is given by:

2

22

1 exp
22

x
f x . (4.75)

The corresponding cumulative distribution function is given by:

2

1 1 erf
2 2

x uF x . (4.76)

where erf refers to the error function, which is expressed as follows:

2

0

2erf
x tx e dt . (4.77)

The standard normal distribution, denoted by , is the special case of the normal distribution
for which the mean is equal to zero and the standard deviation is equal to one. For the special
case of the standard normal distribution, the inverse is given as follows:

1 12 erf 2 1 , 0,1p p p . (4.78)

For the general case of a normal distribution with mean  and standard deviation , the
inverse is given as follows:

1 2 1; , , 0,1F p p p . (4.79)

There is no explicit form for the normal distribution or inverse normal distribution; they need to
be approximated numerically. The method employed in Hydra-Ring is the one described in
the Handbook of Mathematical Functions (Abramowitz & Stegun, YEAR, page 392).

Figure 6.3 shows the probability density of the normal distribution, with the parameters  and
 indicated. Figure 6.4 shows the variation in the density function for different choices of 

and .
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Figure 6.3 Normal probability density function, with parameters  and  indicated

Figure 6.4 Illustration of the effect of parameters  and 

6.5 (Shifted) Lognormal distribution
The lognormal distribution is a probability distribution of a random variable whose logarithm is
normally distributed. That is, if x is a random variable with a lognormal distribution, then Y =
log(x) is normally distributed, and similarly if y is a random variable with a normal distribution,
exp(y) is lognormally distributed.

The lognormal density function is given as follows:

2

22

ln1; , , exp , 0
22

x
f x x

x
. (4.80)

The corresponding cumulative distribution function is given by:
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ln x
F x . (4.81)

where  is the standard normal distribution function described in section 6.4.

The parameters of the lognormal distribution,  and , are the mean and standard deviation
of the associated normally distributed variable. That is, if x is lognormally distributed, and y =
log(x) is normally distributed, the lognormal parameters  and  are the mean and standard
deviation of y. The parameter  is the shift parameter and serves to horizontally translate the
distribution. Figure 6.5 shows the effect of different choices of the parameters.

Figure 6.5 Illustration of the effect of parameters , , and  on the lognormal density function

To get the inverse distribution, the following steps are taken. The first step is, for a given
probability p, the inverse standard normal variable is computed by numerically solving
equation (4.78). The associated normal variable with mean  and standard deviation  is then
computed analytically using equation (4.79). The relationship between the normal and
lognormal distributions is then exploited:

1 1; , exp , 0,1F p p p (4.82)

6.6  (Shifted) Exponential distribution

The density function for the shifted exponential distribution is given as follows:

exp ,
; ,

0,

x x
f x

x
. (4.83)

The corresponding cumulative distribution function is given by:
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1 exp ,
; ,

0,

x x
F x

x
. (4.84)

The inverse distribution can be analytically computed from the distribution function:

1 ln 1
; ,

p
F p . (4.85)

The parameter of the exponential distribution, , is referred to as a rate parameter, and
determines how quickly the density function goes to zero. The parameter  is the shift
parameter and serves to horizontally translate the density. Figure 6.5 shows the effect of
different choices of the parameters.

Figure 6.6 Illustration of the effect of parameters  and  on the exponential density function

6.7 Gumbel distribution
The Gumbel distribution is one of three cases of the generalized extreme value distribution. It
is often used to model the distribution of block maxima.

The probability density function is expressed as follows:

1 1 1; , exp exp expf x x x . (4.86)

The corresponding cumulative distribution function is given by:
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1; , exp expF x x (4.87)

The inverse distribution can be analytically computed from the distribution function:

1 ; , ln lnF p p (4.88)

The parameters of the gumbel distribution,  and , are referred to as the scale and location
parameters, respectively. These two parameters can be written in terms of the mean (E(x))
and standard deviation ( (x)), or in the case of a sample selection, of the sample. The mean
and standard deviation of the gumbel distribution are given as follows:

E x (4.89)

6
x (4.90)

Equations (4.89) and (4.90) can be used to solve for the parameters  and . First,  is solved
in terms of the standard deviation (equation (4.91)), and subsequently, equations (4.89) and
(4.91) are used in combination to solve  in terms of the mean and standard deviation.

6x (4.91)

6x
E x (4.92)

Hydra-Ring supports two types of input: either the set of parameters, or the mean and
standard deviation. An important note is that Hydra-Ring works with the rate parameter
instead of the scale parameter. The rate parameter is equal to the reciprocal of the scale
parameter; that is:

1rate parameter
scale parameter (4.93)

The two parameters that should be input into Hydra-Ring are therefore the rate parameter
and the location parameter. Figure 6.7 shows the effect of different choices of the
parameters.
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Figure 6.7 Effect of the scale and location parameters,  and , on the Gumbel density function

6.8 Weibull distribution
To be filled in

6.9 Rayleigh distribution
To be filled in

6.10 Pareto distribution
To be filled in

6.11 Triangular distribution
To be filled in

6.12 Linear and log-linear interpolation
This section describes the method of interpolation to determine the variable associated with a
given non-exceedance probability, using log-linear interpolation. But first we recall (ordinary)
linear interpolation. The input to such function is a table with two columns: the first gives
probabilities (p values) and the second gives the values of the variable (x values) associated
with the probabilities in the first column. This function can be useful when the distribution of
the variable is best described by a piece-wise linear function, or in the case that the
distribution that describes the variable is not included in the library of distribution functions in
Hydra-Ring. Essentially any distribution function can be handled using interpolation given
sufficient entries in the input table.

The idea of interpolation is that given known values at discrete points, values at positions
between those points can be estimated. There are a number of techniques to accomplish
that. Hydra-Ring offers the function of log-linear interpolation.

Log-linear interpolation is essentially the same as linear interpolation, only the interpolation
takes place over the logarithm of the probability. Linear interpolation is a simple method of
estimating values at positions in between known support points. Support points are p-x pairs
in the input table, where p is the probability and x is the value associated with that probability.
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The points are simply joined by straight line segments in the log(p)-x space. The first step in
linear interpolation is, for a given input value, to determine the two bounding points (log(p)1,
x1) and (log(p)2, x2). Once that is determined, the value of x can be interpolated between the
two bounding points as follows:

1 21interpolx x p x p (4.94)

where , a value bounded between 0 and 1, represents the position of the value log(p)
between log(p)1 and log(p)2:

1

2 1

log log
log log

p p
p

p p
(4.95)

Figure 6.8 illustrates the concept of log-linear interpolation between two support points
(log(p)1, x1) and (log(p)2, x2).

Figure 6.8 Concept of linear interpolation between support points. The black solid circles represent the support
points, and the red diamond shows the interpolated value (log(p), x)

6.13 Conditional Weibull distribution
The conditional Weibull distribution gives the probability that X x conditionally on the event
that X> , where  represents a threshold. It is used in when considering a peaks-over-
threshold (POT) method. The distribution function of the conditional Weibull is given as
follows:

| 1 expP X x X x (4.96)

where the parameters , , and  refer to the threshold, scale, and shape parameter,
respectively. The conditional Weibull distribution is often described in terms of exceedance
frequencies rather than probabilities. The exceedance frequency of x can be described as
follows:
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P |Fr X x X x X (4.97)

where Fr refers to ‘frequency’, and  is the frequency with which the selected threshold  is
exceeded:

Fr X (4.98)

In practice, is determined by counting the number of independent peaks above the
threshold and dividing by the number of years of record.

Expanding equation (4.97) so that the probability is full written out gives the following form of
the exceedance frequency distribution for the condition Weibull:

expFr X x x (4.99)

6.14 Modified Gumbel

The modified Gumbel function is applied in the Dutch load model of Hydra-Ring to describe
wind statistics (see section 4.5.1.4). The form of the modified Gumbel is identical to the
Gumbel distribution (see equation (4.87)), only the argument:

1 x

is replaced with a 2nd-degree polynomial. The function for the modified Gumbel is given by:

; exp exp ( ; , , )r rF x K K x a b c (4.100)

The polynomial Kr is given as:

2; , ,rK x a b c ax bx c (4.101)

The parameters of the modified Gumbel are the coefficients of Kr: a, b, and c.

The modified Gumbel is not a probability distribution; equation (4.100) does not necessarily
span the range from 0 to 1, and the area under the density does not sum to 1. Rather it is a
function that approximates the distribution of the wind speed. The parameters of the function
(a, b, and c) were chosen to ensure this agreement. However, the agreement is only valid for
particular ranges of the wind speed. Figure 6.9 and Figure 6.10 show the modified Gumbel for
the wind station Deelen, shown over two diferent ranges of wind speeds. The former shows
the functions over the range 0 to 40 m/s, and the probability density and distribution function
appear to be reasonable approximations. The latter shows that for negative wind speeds,
rather than the density and the non-exceedance probability being zero, they display peculiar
behavior. This illustrates that these functions are not distributions/density functions, and
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should therefore be used with care, such that only wind speeds in the valid range are
considered.

Figure 6.9  Modified Gumbel for wind station Deelen, shown over the range of wind speeds 0
to 40 m/s

Figure 6.10  Modified Gumbel for wind station Deelen, shown over the range of wind speeds -40 to 40 m/s

To solve for the inverse of the modified Gumbel, equation (4.100) is rearranged:

ln lnrK p (4.102)

where p is the non-exceedance probability. Substituting equation (4.101) for Kr gives the
following:

2 2ln ln ' 0ax bx c p ax bx c (4.103)

where c’ is given as:

' ln lnc c p (4.104)
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The inverse of the modified Gumbel can then be solved using the quadratic equation:

2
2

1

2

4 ' , 4 ' 0
2; , ,

, 4 ' 0
2

b b ac b ac
aF p a b c

b b ac
a

(4.105)

Note that this solution is pragmatic in the sense that only one half of the quadratic solution is
used, based on the knowledge that wind speeds are not negative (note that typically the
quadratic solution is –b +/- sqrt(b^2 – 4ac), and here we ignore the minus). Also, in cases
where the square root term is negative, there are no real solutions; what is done in this case
is to take the value at the peak (or trough) of the parabola, as this point will be the closest to
the x = 0 axis. To illustrate this, Figure 6.11 shows the quadratic equation given by formula
(4.103) for six different values of the non-exceedance probability p. In Figure 6.10 it was
shown that for non-exceedance probabilities less than about 0.35, there is no solution to the
inverse. It is for these cases that the square-root term in formula (4.105) is negative, and the
second term (-b/2a) is used as an approximate solution. This is evident in the first two
subplots of Figure 6.11, where the parabola does not cross the x = 0 line.

Figure 6.11  Quadratic equation (equation (4.103)) for wind station Deelen, shown for six
different non-exceedance probabilities (indicated in figure). The red vertical line indicates the
solution to the inverse (equation (4.105))

6.15 Truncated Gumbel

The truncated Gumbel distribution is used in the correlation model Volker, and is therefore
described in this section. Recall the form of the Gumbel distribution function (equation (4.87)),
shown below for the case of a location parameter equal to zero and a scale parameter equal
to 1:
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exp expF x x (4.106)

A truncated Gumbel distribution has the following form:

1 exp exp ,
; 1

1

d

d

x x x
F x d d

x x
(4.107)

Setting the non-exceedance probability to 1 for values of x greater than xd essentially
truncates the probability that values higher than xd will be observed. That is, the probability
density of x values higher than xd will be equal to zero. The ratio 1/(1 – d) normalizes the
distribution and that ensures that the total probability is equal to 1. The value of d can be
though of as the fraction of the distribution that will be truncated. That is, if d =  0.02,  the
highest 2% of the distribution will be truncated.

The endpoint of the distribution, xd, can be derived from equation (4.107) and is given as
follows:

ln ln 1dx d (4.108)

Figure 6.12  Illustration of the effect of including the truncation factor d>0 in equation(4.107), here shown for d =
0.02



1206006-004-ZWS-0001, 2 January 2013, draft

Hydra Ring Scientific Documentation 243 of 259

7 References

Berger, H.E.J., 2007: Achtergrondrapport HR2006 voor de zoete wateren. Het samenstellen
van de Hydraulische Randvoorwaarden 2006 en de Thermometerrandvoorwaarden 2006.
RWS RIZA rapport 2007.026 (In Dutch).

Bjerager P, 1988. On computation methods for structural reliability analysis. In: Frangopol
DM, editor. New directions, in structural system reliability. Boulder (CO): University of
Colorado, 1988. p. 52±67.

Den Heijer, F., R.J. Vos, F.L.M. Diermanse, J. Groeneweg, R.Tonis, 2007:
Achtergrondrapport HR2006 voor de Zee en Estuaria, Hydraulische Randvoorwaarden
2006. Rapport RIKZ/2006.029., 30 mei 2007 (In Dutch)..

De Waal, J.P. 1999: Achtergronden belastingen dijken IJsselmeergebied, deelrapport 9,
modelleren dammen, voorlanden en golfoploop, RIZA rapport, maart 1999.

Diermanse, 2004: HR2006 herberekening werklijn Maas, rapport WL | Delft Hydraulics in
opdracht van Rijkswaterstaat.

Diermanse, F., Thonus, B. Lammmers, I. en Den Heijer, F., 2003: De veiligheid van
Nederland in kaart – hydrauluische randvoorwaarden. Fase 1 – inventarisatie en
gegevensverzameling, WL | Delft Hydraulics en HKV | Lijn in water in opdracht van
Rijkswaterstaat (in Dutch).

Diermanse, F en Geerse, C, 2011: Correlatiemodellen in Hydra-Ring. Memo juni 2011,
Dletares en HKV in opsraht van Rijkswaterstaat.

Diermanse, F.L.M. and Geerse, C.P.M , 2012: Correlation models in flood risk analysis,
Reliability engineering and system safety, 105 (2012) 64–72

Ditlevsen O, Melchers RE, Gluver H, 1990. General multi-dimensional probability integration
by directional simulation, Computers And Structures 1990;36(2):355±68.

Ferry Borges, J. & M. Castanheta (1971). Structural Safety, course 101, 2nd edition. Lisbon:
Laboratorio National de Engenharia Civil.

Geerse, 2006: Hydraulische Randvoorwaarden 2006 Vecht- en IJsseldelta - Statistiek
IJsselmeerpeil, afvoeren en stormverlopen voor Hydra-VIJ. C.P.M. Geerse. RIZA-
werkdocument 2006.036x. Rijkswaterstaat-RIZA. Lelystad, januari 2006.

Geerse, 2008. Hydra-VIJ invoer Markermeer (herziene en uitgebreide versie van 9 oktber).
C.P.M. Geerse. Memo PR1371.30. HKV Lijn in Water, Lelystad, 28 augustus 2008.

Geerse, 2010. Overzichtsdocument probabilistische modellen zoete wateren. Hydra-VIJ,
Hydra-B en Hydra-Zoet. C.P.M. Geerse (HKV), met medewerking van Herbert Berger en
Robert Slomp (Waterdienst). HKV Lijn in Water, Lelystad, juli 2010. In opdracht van de
Waterdienst.

Geerse, C.P.M, 2011: Hydra-Zoet for the fresh water systems in the Netherlands, probabilistic
model for the assessment of dike heights, report HKV for Rijkswaterstaat.

Geerse, 2011b: Correlatiemodel VSU, Uitgebreidere versie van model VS. Memo, versie 2.
Chris Geerse. HKV, 6 juli 2011.

Geerse en Van Veen, 2007. Statistische afhankelijkheid wind voor de bovenrivieren. Chris
Geerse en Nelle van Veen. HKV Lijn in Water, Lelystad, november 2007. (in Dutch)

Gautier, C. en Groeneweg, J., 2011: Achtergrondrapportage HR2011 voor zee en estuaria,
Deltares in opdracht van Rijkswaterstaat, 1204143-002-HYE-0037, 22 maart 2012 (in
Dutch)

Grooteman, F., 2011: An adaptive directional importance sampling method for structural
reliability, Probabilistic Engineering Mechanics 26 (2011) 134–141.

Grimmett, G.R. and Stirzaker, D.R., 1983: Probability and random processes, Oxford science
publications, isbn 0-19-853185-0.



244 of 259 Hydra Ring Scientific Documentation

1206006-004-ZWS-0001, 2 January 2013, draft

Jongejan, R, 2012: Het lengte-effect in een statistisch homogeen vak (in Dutch), memo
februari 2012

Melchers, 2002: Structural reliability analysis and prediction, Robert E. Melchers, John Wiley
and sons, ISBN0471983241

Ministerie Verkeer en Waterstaat (2006). VoorschriftToetsen op Veiligheid (in English: Safety
Assessment Regulation) Bligh, W.G. (1915). Submerged weirs founded on sand. In:
Dams and weirs, 1915.

RIKZ, 2006. Waterstanden Nederlandse kust en estuaria. Rapport RIKZ/2006.012, 27 juni
2006.

Rossenblatt, M, 1952: Remarks on a multivariate transformation, Ann. Matth Stat., 23, 470-
472

Steenbergen, H. and A. Vrouwenvelder, User's manual PC-Ring Version 3.0 (in Dutch), 2003.
Van Gelder, 2002: Probabilistic design in hydraulic engineering, lecture notes Delft University

of technology, temporary issue, august 2002,
Vrouwenvelder, A, Courage, W, Diermanse, F. en Geerse, C., 2011: belastingmodellen en

rekentechnieken voor TOI, TNO report.
Waarts, P. H., 2000: Structural reliability using finite component analysis; an appraisal of

DARS: Directional Adaptive Respponse Surface Sampling, PH. D. Thesis, delft University
of Technology

TAW, 1994: Technical Advisory committee on Water defences - TAW (1994), Technisch
rapport voorcontrole op het mechanisme piping. Delft, byCalle, E., Weijers, J.

TAW, 2002: Technical Advisory committee on Water defences -. Technical Report on Sand
Boils (Piping). Published at www.enwinfo.nl

Thonus, B., Diermanse, F. en Lammmers, I, 2003: De veiligheid van Nederland in kaart –
hydraulische randvoorwaarden. Fase 2 – uitwerken en implementeren van
belastingmdellen. WL | Delft Hydraulics en HKV | Lijn in water in opdracht van
Rijkswaterstaat (in Dutch).

Volker, 1987: Statistiek van wind en waterstanden in Hoek van Holland DWW, tweede
concept, 20 mei 1987.



Hydra-Ring Design Document 245 of 45

C:\Data\Dijken\Hydra-Ring\Trunk\doc\Hydra Ring Glossary.doc





Hydra Ring Scientific Documentation 247 of 45





Hydra-Ring Design Document 1 of 45

A Dutch Hydraulic Boundary Conditions – version TMR2006

A.1 Overview of stochastic input variables and regions

This annex describes the definition of the different regions with associated stochastic variables and their distributions and correlations, according to the
Dutch TMR2006 boundary conditions set.

Hydraulic boundary conditions are typically the water level and the different wave parameters at a certain location. Hydra-Ring determines these values
by interpolation in data tables, using the values of certain stochastic variables as input. The values of the water level and wave parameters in the data
tables are a result from hydraulic models. Hydra-Ring supports the use of different data tables for different regions. A region is in this context defined as
an area with a unique set of stochastic input parameters, with associated distributions and correlations.

The Dutch TMR2006 boundary conditions set consists of sixteen regions. Table 7.1 presents these regions.

Table 7.1 - Overview of regions in the TMR2006 database

Region number Region Description
1 Upstream river region (no tidal influence)  - Rhine dominated

2 Upstream river region (no tidal influence)  - Meuse dominated

3 Downstream river region (tidal influence) – Rhine dominated
4 Downstream river region (tidal influence) – Meuse dominated

5 IJssel delta

6 Vecht delta

7 IJsselmeer

8 Markermeer

9 Wadden Sea east

10 Wadden Sea west
11 Dutch coast north

12 Dutch coast middle

13 Dutch coast south
14 Oosterschelde

15 Westerschelde



16 Dunes (Dutch coast, Wadden islands, Zeeland)

Table 7.2 lists (in the vertical) the independent load variables that are present in Hydra-Ring and in the horizontal the sixteen regions. Every dike location
in the Netherlands belongs to one region. For each region, Table 7.2 can be used to determine which independent load variables are active there (a
cross (x) indicates the variable is active in the given region). The value of the parameters of the load variables can be obtained from the TMR2006 table
at the end of this appedix (Table 7.3).

Table 7.2- Inclusion of load variables at the different regions in the Netherlands; the sixteen regions are shown on the horizontal axis and the load variables are shown on the vertical; an ‘x’
indicates that the variable is active in the given region

                        Load variables Region

Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Discharge Lobith x x x x

Discharge Lith | Lobith  x   x

Discharge Olst x

Discharge Borgharen  x   x

Discharge Dalfsen | Olst x

Water level Maasmond  x  x

Water level IJssel lake | windspeed Schiphol12  x x x

Water level Marker lake | windspeed Schiphol12  x

Water level Lauwersoog  x

Water level Harlingen  x

Water level Den Helder  x

Water level IJmuiden  x

Water level Hoek van Holland  x

Water level OS11 x

Water level Vlissingen x

Wind speed Deelen x  x

Wind speed Schiphol 12**  x  x

Wind speed Schiphol 16**  x  x

Wind speed Schiphol | MM** x x

Wind speed Terschelling West | Water level  x
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Lauwersoog

Wind speed Terschelling West | Water level

Harlingen x

Wind speed de Kooy |

Water level Den Helder  x

Wind speed IJmuiden | Water level IJmuiden  x

Wind speed Hoek van Holland | Water level

Hoek van Holland  x

Wind speed Vlissingen | Water level OS 11 x

Wind speed Vlissingen | Water level Vlissingen  x

Wave period ELD | Wind speed de Kooy x

Wave period YM6 | Wind speed IJmuiden  x

Wave period EUR | Wind speed Hoek van

Holland x

Prediction error water level MM  x  x

Prediction error water level OK  x

Duration of the wind setup x

Phase difference  x

Water level dunes x

Wave height dunes | water level dunes x

Peak period dunes | wave height dunes x

Wind direction x x x x x x x x x x x x x x  x

* Phase difference refers to the time lag between the peak of the storm surge and the peak of the astronomical high tide
** Schiphol 12=Marker and IJssel lakes, Schiphol 16=IJssel delta and Vecht delta, MM=Lobith and Lith, OK=Oostersch.

A.1.1 TMR2006 parameters

References to the data sources for all distribution and correlation parameters are presented in Table 7.3.

Table 7.3 -  Location of the TMR2006 parameters



Variable Probability distribution and peak duration Duration curve (FBC model) Correlation

Type Data sources Type Data sources Type Data sources

Discharge Lobith

Interpolation
(loglinear for
distribution
and linear for
peak duration)

VNK_2003_belastingmodellen_fase1 [App. 3A,3N]

TMR2006/WWdatabasis/WenWtzV

HydraRing\Trunk\data\Afvoerstatistiek Hydra-Zoet

polynomial

PC-Ring manual-Statistical models
[Sec. 4.2.2]

TMR2006/WWdatabasis/WenWtzV
See Lith

Discharge Lith |
Lobith

Interpolation
(loglinear for
distribution
and linear for
peak duration)

VNK_2003_belastingmodellen_fase1 [App. 3B]

TMR2006/WWdatabasis/WenWtzV

HydraRing\Trunk\data\Afvoerstatistiek Hydra-Zoet

polynomial

PC-Ring manual-Statistical models
[Sec. 4.2.3]

TMR2006/WWdatabasis/WenWtzV
PCR/NL

Wind/waterlevel
VNK_2003_belastingmodellen_fas
e1 [sec. 6.2.3]
PC-Ring manual-Statistical models
[Sec. 4.2.6]

Discharge Olst

Interpolation
(loglinear for
distribution
and linear for
peak duration)

VNK_2003_belastingmodellen_fase1 [App. 4A]

HydraRing\Trunk\data\Afvoerstatistiek Hydra-Zoet
polynomial

PC-Ring manual-Statistical models
[Sec. 4.2.4]

Discharge Dalfsen

Interpolation
(loglinear for
distribution
and linear for
peak duration)

VNK_2003_belastingmodellen_fase1 [App. 4A]

HydraRing\Trunk\data\Afvoerstatistiek Hydra-Zoet
polynomial

PC-Ring manual-Statistical models
[Sec. 4.2.6.2]

Water level
Maasmond

Cond. Weibull
VNK_2003_belastingmodellen_fase2 [Section
2.2.4] ---- -----

Water level IJssel
lake

Interpolation
(loglinear for

VNK_2003_belastingmodellen_fase1 [App. 5A,5B]
exponential

PC-Ring manual-Statistical models
[Sec. 4.3.2]

VNK_2003_belastingmodellen_fas
e1 [sec. 4.2.3]
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distribution
and linear for
peak duration)

TMR2006/WWdatabasis/WenWtzV

HydraRing\Trunk\data\Afvoerstatistiek Hydra-Zoet

Water level Marker
lake | wind speed
Schiphol 12

Interpolation
(loglinear for
distribution
and linear for
peak duration)

VNK_2003_belastingmodellen_fase1 [App.
5C,5D]

TMR2006/WWdatabasis/WenWtzV

HydraRing\Trunk\data\Afvoerstatistiek Hydra-Zoet

exponential
PC-Ring manual-Statistical models
[Sec. 4.3.3]

Volker
VNK_2003_belastingmodellen_fas
e1 [sec. 4.2.3]

Water level
Lauwersoog

Cond. Weibull
VNK_2003_belastingmodellen_fase1 [App. 6B]
PC-Ring manual-Statistical models
[App. C]

----- ----- ----- -----

Water level Harlingen Cond. Weibull
VNK_2003_belastingmodellen_fase1 [App. 6B]
PC-Ring manual-Statistical models
[App. C]

----- -----
See Wind speed
Terschelling West

-----

Water level Den
Helder

Cond. Weibull
VNK_2003_belastingmodellen_fase1 [App. 6B]
PC-Ring manual-Statistical models
[App. C]

----- -----
See Wind speed de
Kooy

-----

Water level IJmuiden Cond. Weibull
TMR2006/WWdatabasis/WenWtzV

------- -----
See wind speed
IJmuiden

-----

Water level Hoek van
Holland

Cond. Weibull
See Wind speed
Hoek van Holland

Water level OS11 Cond. Weibull
VNK_2003_belastingmodellen_fase1 [App. 6B]
PC-Ring manual-Statistical models
[App. C]

----- -----
See Wind speed
Vlissingen

-----

Water level
Vlissingen

Cond. Weibull
VNK_2003_belastingmodellen_fase1 [App. 6B]
PC-Ring manual-Statistical models
[App. C]

----- -----
See Wind speed
Vlissingen

-----

Wind speed Deelen Modif. Gumbel

VNK_2003_belastingmodellen_fase1 [App. 3J]
PC-Ring manual-Statistical models
[App. B]

TMR2006/WWdatabasis/WenWtzV

----- ----- ----- -----



Wind speed Schiphol
12

Modif. Gumbel
TMR2006/WWdatabasis/WenWtzV

----- -----
See water level
lakes

Wind speed Schiphol
16

Modif. Gumbel
TMR2006/WWdatabasis/WenWtzV

----- ----- ----- -----

Wind speed Schiphol
| MM

-----
TMR2006/WWdatabasis/WenWtzV

----- ----- Volker
TMR2006/WWdatabasis/WenWtzV

Wind speed
Terschelling West |
Water level
Lauwersoog

----- ----- ----- ----- PCR

Appendix B [B.2.5.2]

TMR2006/WWdatabasis/WenWtzV

Wind speed
Terschelling West |
Water level Harlingen

----- ----- ----- ----- PCR

Appendix B [B.2.5.2]

TMR2006/WWdatabasis/WenWtzV

Wind speed de Kooy |
Water level Den
Helder

----- ----- ----- -----
PCR See Wave
period ELD

Appendix B [B.2.5.2]

TMR2006/WWdatabasis/WenWtzV

Wind speed IJmuiden
| Water level
IJmuiden

----- ----- ----- -----
Volker
See Wave period
YM6

TMR2006/WWdatabasis/WenWtzV

Wind speed Hoek
van Holland | Water
level Hoek van
Holland

----- ----- -----
Volker
See Wave period
EUR

TMR2006/WWdatabasis/WenWtzV

Wind speed
Vlissingen | Water
level OS 11

----- ----- ----- ----- PCR

Appendix B [B.2.5.2]

TMR2006/WWdatabasis/WenWtzV

Wind speed
Vlissingen | Water

----- ----- ----- ----- PCR
Appendix B [B.2.5.2]
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level Vlissingen TMR2006/WWdatabasis/WenWtzV

Wave period ELD |
Wind speed de Kooy

----- ----- ---- ----- Volker
TMR2006/WWdatabasis/WenWtzV
?

Wave period YM6 |
Wind speed IJmuiden

----- ----- ---- ----- Volker
TMR2006/WWdatabasis/WenWtzV
?

Wave period EUR |
Wind speed Hoek
van Holland

----- ----- ---- ----- Volker
TMR2006/WWdatabasis/WenWtzV
?

Prediction error water
level MM

Normal[cr-ref]
PC-Ring manual-Statistical models
[Section 4.8]

----- ----- ---- ----

Duration of the wind
setup

???? ???? ---- ----- ---- ----

Phase difference ???? ???? ---- ----- ---- ----

Water level dunes Cond. Weibull
Belastingmodel duinen
[Section 2.3.2]

----- -----
See Wave height
Dunes

----

Wave height dunes |
water level dunes

-----
Belastingmodel duinen
[Section 2.3.3]

----- -----
NL-Dunes See Peak
Period Dunes

Belastingmodel duinen
[Section ?]

Peak period dunes |
wave height dunes

-----
Belastingmodel duinen
[Section 2.3.4, App. A]

----- ----- NL-Dunes
Belastingmodel duinen
[Section ?]

Wind direction --- TMR2006/WWdatabasis/WenWtzV ----- ----- ----

The parameters for autocorrelation in space and time can be found in this datasource: TMR2006/belasting


